跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.172) 您好!臺灣時間:2025/09/11 07:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳建宏
研究生(外文):Jian-Hong Chen
論文名稱:城市物流網路中即時車輛繞徑之延遲緩解策略
論文名稱(外文):Delay Mitigation Strategies for Real-Time Fleet Routing in Urban Logistics Networks
指導教授:陳正杰陳正杰引用關係
指導教授(外文):Cheng-Chieh Chen
學位類別:碩士
校院名稱:國立東華大學
系所名稱:運籌管理研究所
學門:商業及管理學門
學類:行銷與流通學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
論文頁數:122
中文關鍵詞:時間窗車輛途程問題繞境與排程延遲緩解策略遺傳演算法
外文關鍵詞:Vehicle Routing Problem with Time WindowsReal-time Vehicle Routing and DispatchingDelay Mitigation StrategiesGenetic Algorithm
相關次數:
  • 被引用被引用:0
  • 點閱點閱:172
  • 評分評分:
  • 下載下載:20
  • 收藏至我的研究室書目清單書目收藏:0
為了提高服務質量,滿足不同類型的顧客具體要求交付時間,近來批發商都傾向於提供更方便快捷的配送服務,而不是按造傳統的配送方式進行。顧客可能有不同優先時間,物流服務供應商交付貨物必須在不同的時間窗。根據預先排定的配送路徑和排程,如何將城市物流服務供應商反應,應對緩解延遲發生在上游入站城際配送車輛,為值得研究得課題。
本研究參考Ghiani et al. (2004)和Rabah and Mahmassani (2002)。前者的研究提到,物流配送系統已被確認在全球,國家和地方經濟的主要貢獻者;後者則分析了資訊和通訊技術(Information and Communication Technologies;ICT)操作和控制物流系統,提供即時訊息使用並逐步的降低成本。
本研究從使用典型時間窗車輛途程問題著手,接著考慮在配送過程即時的車輛調度,並與不同的延遲緩解策略調度最佳化模型做比較。本研究先解決一個小路網的情況並使用最佳化軟體Lingo檢查可行性,接著再應用遺傳演算法來求解大規模的網路問題。系統係能根據四種類型延遲緩解策略進行分析,包括:(1) S0:基本策略的不做任何處理(乾脆忽略上游延遲現象);(2) S1a:首先選擇節點需求量高的先服務;S1b:選擇節點時間窗較緊的先服務;(3) S2a:直接增加同質性車輛進行配送服務;S2b:直接增加異質性車輛進行配送服務;(4) S3a:混合策略與增加同質性車輛並選擇時間窗較緊的節點為優先服務,以及S3b:混合策略與增加異質性車輛並選擇時間窗較緊的節點為優先服務。

數值分析的研究結果顯示,在S1a策略無法達到一個可行性原因在於超過最大容許時間的關係,於是就不考慮使用。策略S2a和S3a中的解決方案,在研究中和其他策略相比更有效的緩解延遲;使整體系統能夠最佳化。當上游延遲持續增加的情況下,由於更加複雜的環境因素,比較推薦使用的S3b方案。

In order to improve service quality and satisfy specific delivery requests from different kinds of customers, recently wholesalers are tending to provide more efficient and convenient distribution services rather than follow traditional approaches. Customers may have different preferred hours, and logistics service providers must deliver goods in different time windows. According to the pre-determined delivery routes and schedules, how should city logistics service providers react, respond, and mitigate the delays occurred at the upstream inbound intercity delivery vehicles?
This research is motivated by Ghiani et al. (2004) and Rabah and Mahmassani (2002). The former study mentioned that logistics and distribution systems have been recognized as the key contributors in global, national, and local economy. The later study analyzed the opportunities offered by information and communication technologies (ICT) to operate and control a logistics system in real-time with progressively reduced costs.
The study starts from a typical vehicle routing problem with time windows and then considers a real-time vehicle routing and dispatching optimization model with different delay mitigation strategies during the distribution processes. We solve a small case problem to check the feasibility with the optimization software LINGO, and then further apply Genetic Algorithm to solve a large-scale network problem. System performances based on four types of delay mitigation strategies are analyzed, such as: (1) S0: Do nothing (i.e. simply ignore the upstream delay); (2) S1a: Selected nodes with higher demand first served, and S1b: Selected nodes with tighter time windows first served; (3) S2a: Increasing homogenous delivery vehicles in service, and S2b: Increasing heterogeneous delivery vehicles in service; (4) S3a: A hybrid strategies with increasing homogenous vehicles and selected nodes with tighter time windows first served, and S3b: A hybrid strategies with increasing heterogeneous vehicles and selected nodes with tighter time windows first served.
Findings in our numerical examples show that the S1a strategy could not easily reach a feasible solution, and the solutions with strategies S2a and S3a outperform other strategies in the most studied cases. But if the upstream delay keeps increase, the strategy S3b becomes the most effective approach due to the more complexity environment.

摘要 ......................................................................................................... II
Abstract .................................................................................................... V
目錄 ........................................................................................................ VI
圖目錄 ................................................................................................. VIII
表目錄 ...................................................................................................... X
第一章緒論 ............................................................................................ 1
1.1 研究動機與背景..................................................................................... 1
1.2 研究目的................................................................................................. 4
1.3 研究範圍................................................................................................. 5
1.4 研究流程................................................................................................. 7
第二章文獻回顧 .................................................................................... 9
2.1 時間窗車輛路線定義............................................................................. 9
2.1.1 硬時間窗車輛途程問題(VRPHTW) ....................................... 14
2.1.2 軟時間窗車輛途程問題(VRPSTW) ........................................ 16
2.1.3 時間窗車輛途程問題解法....................................................... 18
2.1.3.5 解法比較................................................................................... 28
2.2 擾動管理............................................................................................... 29
2.2.1 航空擾動管理........................................................................... 29
2.2.2 物流擾動管理........................................................................... 30
2.3 延遲管理............................................................................................... 32
2.3.1 客運延遲................................................................................... 33
2.3.2 物流延遲................................................................................... 35
2.4 文獻評析............................................................................................... 37
第三章研究方法 .................................................................................. 39
3.1 研究架構............................................................................................... 39
VII
3.2 研究問題............................................................................................... 40
3.3 研究策略............................................................................................... 42
3.4 問題模型假設和模型建構................................................................... 44
3.4.1 本研究模型假設與建構........................................................... 48
3.4.2 策略使用................................................................................... 54
第四章範例分析 .................................................................................. 61
4.1 範例介紹............................................................................................... 61
4.2 範例設計............................................................................................... 66
4.2.1 小路網設計............................................................................... 66
4.2.2 大路網設計............................................................................... 68
4.3 範例結果分析....................................................................................... 69
4.3.1 小路網結果分析....................................................................... 69
4.3.2 大路網結果............................................................................... 90
4.4 敏感度分析........................................................................................... 93
第五章結論與建議 ............................................................................. 113
5.1 結論..................................................................................................... 113
5.2 未來研究建議..................................................................................... 115
參考文獻 ........................................................................................ 117
中文參考文獻:
1. 卓裕仁(2001),「以巨集啟發式方法求解多車輛與週期性車輛路線問題之
研究」,國立交通大學,博士論文。
2. 馮正民和邱裕鈞(2004),「研究分析方法」。
3. 陳毓潔(2013),「動態訂價於宅配物流配送時段管理之研究」國立東華大學,
碩士論文。
英文參考文獻:
1. A.L. Kok, E.W. Hans, J.M.J. Schutten. (2011) Optimizing departure times in
vehicle routes. European Journal of Operational Research, 210 (3), pp. 579–587
2. Braysy O, Gendreau M. (2005) Vehicle routing problem with time windows,
part I route construction and local search algorithms. Transportation
Science;39(1):104–18.
3. Braysy O, Gendreau M. (2005) Vehicle routing problem with time windows,
part II: metaheuristics. Transportation Science;39:119–39.
4. B. Yu , Z.Z. Yang , B.Z. Yao. (2011) A hybrid algorithm for vehicle routing
problem with time windows. Expert Systems with Applications 38 435–441
5. Carey M.; A. Kwieciński. (1995) Properties of Expected Costs and Performance
Measures in Stochastic Models of Scheduled Transport. European Journal of
Operational Research, v 83, pp. 182-199.
118
6. Chiang WC, Russell RA.(2004) A metaheuristic for the vehicle-routeing
problem with soft time windows. Journal of the Operational Research Society
55, 1298–1310
7. Chi-Bin Cheng , Keng-Pin Wang. (2009) Solving a vehicle routing problem
with time windows by a decomposition technique and a genetic algorithm.
Expert Systems with Applications 36 7758–7763
8. Chen C., and P. Schonfeld (2011) Alleviating Schedule Disruptions at
Intermodal Freight Transfer Terminals, Transportation Research Record, n 2238,
pp. 32–43.
9. Chen C., and P. Schonfeld (2013) A Dispatching Model for Countering Delay
Propagation in Intermodal Logistics Timed-Transfer Systems. Transportation
Research Board Business Office
10. Ding,Q.-L., Hu, X.-P., Wang, Y.-Z.(2010) A model of disruption management
for solving delivery delay. Advances in Intelligent Decision Technologies. In:
Proceedings of the Second KES International Symposium IDT. Baltimore,
USA, pp. 227–237.
11. Federico Liberatore , Giovanni Righini , Matteo Salani. (2011) A column
generation algorithm for the vehicle routing problem with soft time windows.
4OR-Q J Oper Res 9:49–82
12. Higgins A.; E. Kozan. (1998) Modeling Train Delays in Urban Networks.
Transportation Science, v 32, n 4, p346-357
13. G.B. Alvarenga, G.R. Mateus, G. de Tomi. (2007) A genetic and set
partitioning two-phased approach for the vehicle routing problem with time
windows. Computers & Operations Research., 34, pp. 1561–1584
119
14. GHIANI, G., MUSMANNO, R. & LAPORTE, G. (2004) Introduction to
logistics systems planning and control, Chichester, West Sussex; Hoboken, NJ,
USA, J.Wiley.
15. Jiuping Xu , Fang Yan , Steven Li. (2011) Vehicle routing optimization with
soft time windows in a fuzzy random environment. Transportation Research
Part E 47 1075–1091
16. K.C. Tan , L.H. Lee , K. Ou. (2001) Artificial intelligence heuristics in solving
vehicle routing problems with time window constraints. Engineering
Applications of Artificial Intelligence 14 825–837
17. Meester L. E.; S. Munsa. (2007) Stochastic Delay Propagation in Railway
Networks and Phase-type Distributions. Transportation Research Part B:
Methodological, v 41, n 2, p 218-230.
18. Mu, Q., Fu, Z., Lysgaard, J., & Eglese, R. (2010). Disruption management of
the vehicle routing problem with vehicle breakdown. The Journal of the
Operational Research Society, 62, 742–749.
19. M.A. Figliozzi. (2010) An iterative route construction and improvement
algorithm for the vehicle routing problem with soft time windows. Transp. Res.
Part C, 18, pp. 668–679
20. N. Azi, M. Gendreau, J.Y. Potvin. (2007) An exact algorithm for a
single-vehicle routing problem with time windows and multiple routes.
European Journal of Operational Research., 178, pp. 755–766
21. N. Azi, M. Gendreau, J.Y. Potvin. (2010) An exact algorithm for a vehicle
routing problem with time windows and multiple use of vehicles. European
Journal of Operational Research., 202, pp. 756–763
120
22. Narath Bhusiri , Ali Gul Qureshi, Eiichi Taniguchi. (2014) The trade-off
between fixed vehicle costs and time-dependent arrival penalties in a routing
problem. Transportation Research Part E 62 1–22
23. Potvin, J.Y., Xu, Y., Benyahia, I.: Vehicle routing and scheduling with dynamic
travel times. Computers & Operations Research 33(4), 1129–1137 (2006)
24. Pavankumar , Maged , Fernando, Kurt . A delay estimation technique for single
and double-track railroads. Transportation Research Part E 46 (2010) 483–495
25. Qureshi, A. G., Taniguchi, E., & Yamada, T. (2009) Column Generation-based
Heuristics for Vehicle Routing Problem with Soft Time Windows. Journal of
the Eastern Asia Society for Transportation Studies, Vol. 8,
26. Qianxin Mu · Richard W. Eglese. (2013) Disrupted capacitated vehicle routing
problem with order release delay. Ann Oper Res 207:201–216
27. RABAH, M. & MAHMASSANI, H. S. (2002) Impact of information and
communication technologies on logistics and freight transportation - Example
of vendor-managed inventories. Freight Transportation 2002, 10-19.
28. Sandro Lorini , Jean-YvesPotvin , NicolasZufferey. Online vehicle routing and
scheduling with dynamic travel times. Computers & Operations Research 38
(2011) 1086–1090
29. Wang P. T. R.; L. A. Schaefer; L. A. Wojcik. (2003) Flight Connections and
Their Impacts on Delay Propagation. AIAA/IEEE Digital Avionics Systems
Conference Proceedings, v 1.
30. X P Wang, H Y Cao. (2008)(1) A Dynamic Vehicle Routing Problem with
Backhaul and Time Window [C]. IEEE International Conference on Service
Operations and Logistics, and Informatics.: 1256-1261.
121
31. X.-P. Wang, X. Wu, X.-P. Hu. (2010) A study of urgency vehicle routing
disruption management problem. Journal of Networks, 5 (12), pp. 1426–1433
32. Xuping Wang, Junhu Ruan , Yan Shi.(2012) A recovery model for
combinational disruptions in logistics delivery: Considering the real-world
participators International Journal of Production Economics ; p508-520.
33. Yuan J.; I. A. Hansen. (2007). Optimizing Capacity Utilization of Stations by
Estimating Knock-on Train Delays. Transportation Research Part B, 41, p
202-217.
34. Zheng Wang and Jia Shi. (2009) A Model for Urban Distribution System under
Disruptions of Vehicle Travel Time Delay. IEEE
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top