跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/09 18:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:郭原宗
研究生(外文):KUO, YUAN-TSUNG
論文名稱:Type II光起始劑之光聚合動力學探討 : 以鄰氯代六芳雙基咪唑/N-苯基甘氨酸及其衍生物為例
論文名稱(外文):Kinetic Studies of Type II Photoinitiator Photopolymerization Based on 2-Chloro-hexaarylbimmidazole (o-Cl-HABI)/N-Phenyl glycine (NPG) and Its Derivatives
指導教授:陳永忠陳永忠引用關係何宗漢何宗漢引用關係
指導教授(外文):Chen, Yung-ChungHo, Tsung-Han
口試委員:莊宗原
口試委員(外文):Juang, Tzong-Yuan
口試日期:2018-07-06
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:化學工程與材料工程系博碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:99
中文關鍵詞:光起始劑光聚合動力學鄰氯代六芳雙基咪唑/ N-苯基甘氨酸不同重量比自由基反應N-苯基甘氨酸衍生物
外文關鍵詞:PhotoinitiatorPhotoreactivityo-Cl-HABI/NPGDifferent weight ratiosRadical polymerization mechanismNPG derivatives
相關次數:
  • 被引用被引用:1
  • 點閱點閱:632
  • 評分評分:
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
Type II光起始劑系統因具有較佳的光敏感性等特性,常被用於光固化製程,如負型光阻乾膜 (Photoresist dry film) 及影像成像(Imaging) 系統之中。本研究透過傅立葉轉換紅外光譜 (Fourier Transform Infrared Spectrometer; FT-IR)、Gel fraction、螢光光譜 (Fluorescence Spectrometry ; PL)、電子順磁共振波譜儀 (Electron Spin Resonance ; ESR) 等檢測方式,對不同重量下之鄰氯代六芳雙基咪唑 (o-Cl-HABI)/N-苯基甘氨酸 (NPG) 光起始劑系統於三官能基單體三羥甲基丙烷三甲基丙烯酸酯 (TMPTMA)下進行光聚合動力學之探討。其中隨著NPG的含量增加 (0.05、0.1、0.25 wt%),其固化速率越快;然而o-Cl-HABI從0.5 wt%、1 wt%到2 wt%時,其雙鍵反應趨勢是呈現曲線變化。此外,於本研究中亦針對於照光環境不同情況下如空氣與氮氣其固化速率之探討,並了解其電子傳遞之路徑。
由於NPG為最後提供自由基進行固化反應之重要角色,因此本研究中亦針對NPG進行結構上之修飾,合成了對位含有-OCH3、-Cl、-NO2等取代基團之p-substituted NPG衍生物,其結構以氫譜核磁共振 (1H-NMR) 和質譜法 (Mass) 鑑定分析其衍生物之結構與分子量,並透過上述光固化檢測之方法,對於o-Cl-HABI與NPG衍生物所組成之光起始劑體系進行光聚合動力學以及物性之探討。
於光聚合動力學方面,以相同重量下 (2:0.05 wt%) 下之o-Cl-HABI/NPG衍生物光起始劑系統,透過Gel fraction方法得到其轉化率之表現為NPG > OMe-NPG > Cl-NPG > NO2-NPG。
於物性方面,以示差熱掃描分析儀 (DSC) 分析鑑定熔點介於127-238 oC之間。紫外/可見光光譜 (UV/Visible spectra) 分析量測其莫耳消光係數其大小分別為NPG > OMe-NPG > Cl-NPG > NO2-NPG。同時也對於光起始劑進行溶解度之探討,發現到在溶劑二氯甲烷 (DCM) 下,光起始劑溶解度表現最差。
另外,也對一系列之不同光起始劑進行物性之分析以及循環伏安法量測其氧化還原電位得知其HOMO值與LUMO值。進一步以Rehm-Weller equation計算得到OMe-NPG之ΔGET為-1.49 eV,NPG之ΔGET為-1.54 eV,Cl-NPG之ΔGET為-1.22 eV,NO2-NPG之ΔGET為-0.05 eV。ΔGET之值以NPG之值最小,可利於電子之轉移。此外,NPG之莫耳消光係數較大,因而得到最佳之轉化率。
Type II photoinitiator systems are widely used in photocuring processes due to their low cost, faster photospeed which applied in many industrial applications such as photoresist dry film and imaging. One of the typical Type II photo-initiator package based on o-Cl-HABI (hydrogen acceptor) and NPG (hydrogen donor) systems (where o-Cl-HABI is a 2-chlorohexaaryl biimidazole, NPG is an N-phenyl glycine) was investigated in this study. The photocuring behavior for different weight ratios of o-Cl-HABI and NPG was studied through FT-IR, gel-fraction, electron spin resonance (ESR) and photoluminescence (PL) methodologies. As the amount of NPG increased from 0.05 wt% to 0.1and 0.25 wt%, the faster curing speed was achieved. However, the curvature photo-reactivity phenomenon was observed as the amount of o-Cl-HABI at 0.5, 1 and 2 wt%, respectively. In this study, the air and nitrogen atmospheres effect are conducted.
Since NPG is an important factor on the photocuring reactivity, the structural modification of NPG is also performed for comparison. The p-OCH3, -Cl, -NO2 NPG derivatives were synthesized accordingly. These structures were identified by 1H-NMR and mass spectrometry. The NPG derivatives exhibited melting temperatures of 146-238 oC that was higher than the reference NPG (127 oC). The NPGs also displayed good solubility in Acetone, THF and DMF. In addition, the molar extinction coefficients of NPG, OCH3-NPG, Cl-NPG and NO2-NPG were 4.34×104 M-1cm-1, 2.36×104 M-1cm-1, 2.08×104 M-1cm-1, 1.13×103 M-1cm-1, respectively.
In addition, the HOMO, LUMO levels and their corresponding ΔGET values were calculated to correlate with the photoreactivity. The double bond conversion was final tested through the gel fraction method under the same weight ratios (o-Cl-HABI/NPG = 2:0.05 wt%). The order of conversion rate is NPG > OCH3 -NPG > Cl-NPG > NO2-NPG that is consisted with ΔGET values mentioned above.

目錄
摘要 I
Abstract III
致謝 V
目錄 VI
表目錄 IX
圖目錄 X
第一章 緒論 1
1.1 前言 1
1.2 光固化體系與機制之簡介 2
第二章 文獻回顧與研究動機 3
2.1 光源之簡介 3
2.2 不飽和單體/寡聚體之簡介 3
2.3 光固化反應機制之介紹 7
2.3.1 陽離子型光固化 7
2.3.2 自由基型光固化 8
2.4 光起始劑 (Photo-initiators) 之簡介 10
2.4.1 陽離子型光起始劑之簡介 10
2.4.2 自由基型光起始劑之簡介 10
2.5 研究動機及策略 20
第三章 實驗方法 22
3.1 實驗架構 22
3.2 儀器設備 23
3.2.1 分析儀器 23
3.2.2 實驗設備 26
3.3 實驗藥品 27
3.4 有機溶劑 30
3.5 實驗部分 (I) 32
3.5.1 光固化反應動力學 - Gel fraction分析方法之建立 32
3.5.2 光固化反應動力學 - 傅立葉轉換紅外光譜分析方法之建立 33
3.5.3 光化學性分析 - 紫外/可見光光譜方法之建立 34
3.5.4 光化學性分析 - 螢光光譜分析方法之建立 36
3.5.5 光化學性分析 - 電子順磁共振波譜儀分析方法之建立 37
3.5.6 電化學分析 - 循環伏安法分析方法建立 40
3.5.7 不同環境下 (氮氣/空氣) 對於反應速率之比較 40
3.6 實驗部分 (II) 41
3.6.1 NPG衍生物之合成 42
3.6.2 o-Cl-HABI、NPG及其衍生物之DSC分析 45
3.6.3 o-Cl-HABI、NPG及其衍生物之溶解度 (Solubility) 分析 45
第四章 結果與討論 47
4.1 不同重量比下o-Cl-HABI/NPG在TMPTMA下之光固化性質分析 47
4.1.1 Gel fraction轉化率分析 47
4.1.2 FT-IR之轉化率分析 50
4.2 以不同重量比下o-Cl-HABI/NPG之光化學性質分析 51
4.2.1 紫外光/可見光光譜 (UV/Visible spectra) 之分析結果 51
4.2.2 螢光光譜 (PL spectra) 之分析結果 54
4.2.3 電子順磁共振波譜儀 (ESR) 之分析 56
4.3 在不同環境下反應固化之轉化率比較 57
4.4 含NPG衍生物之光起始劑體系 59
4.4.1 NPG衍生物之合成鑑定 60
4.4.2 DSC分析 65
4.4.3 溶解度分析 66
4.4.4 UV/Visible分析 67
4.5 光起始劑 (o-Cl-HABI、NPG及其衍生物) 之氧化還原電位比較 68
4.5.1 循環伏安法 (CV) 電流-電壓圖的比較 69
4.5.2 含NPG衍生物之光起始劑體系在TMPTMA下之光固化反應動力學分析 73
第五章 結論與建議 75
第六章 參考文獻 77
附錄 A 84


1.王心麟, 鏈轉移劑與活性稀釋劑對UV光固化塗料物性之研究, in 化學工程與材料工程系博碩士班. 2017, 國立高雄應用科技大學. p. 101.
2.WANG, Q. Y., GE, S. S., LI, J. Y., ZHAO, Y. H., Research Progress of UV-Curable Coatings [J]. Chemical Propellants & Polymeric Materials, 2009. 3: p. 007.
3.Shaw, J. M., Gelorme, J. D., LaBianca, N. C., Conley, W. E., Holmes, S. J., Negative photoresists for optical lithography. IBM journal of Research and Development, 1997. 41(1.2): p. 81-94.
4.O'Brien, J., Hughes, PJ., Brunet, M., O'Neill, B., Alderman, J., Lane, B., O'Riordan, A., O'Driscoll, C., Advanced photoresist technologies for microsystems. Journal of Micromechanics and Microengineering, 2001. 11(4): p. 353.
5.Dietliker, K., Jung, T., Benkhoff, J., Kura, H., Matsumoto, A., Oka, H., Hristova, D., Gescheidt, G., Rist, G., New developments in photoinitiators. in Macromolecular Symposia. 2004. Wiley Online Library.
6.Altinkok, C., Uyar, T., Tasdelen, M. A., Yagci, Y., In situ synthesis of polymer/clay nanocomposites by type II photoinitiated free radical polymerization. Journal of Polymer Science Part A: Polymer Chemistry, 2011. 49(16): p. 3658-3663.
7.Yagci, Y., Jockusch, S., Turro, N. J., Photoinitiated polymerization: advances, challenges, and opportunities. Macromolecules, 2010. 43(15): p. 6245-6260.
8.Fuchs, Y., Soppera, O., Haupt, K., Photopolymerization and photostructuring of molecularly imprinted polymers for sensor applications—A review. Analytica chimica acta, 2012. 717: p. 7-20.
9.Monroe, B. M., Weed, G. C., Photoinitiators for free-radical-initiated photoimaging systems. Chemical Reviews, 1993. 93(1): p. 435-448.
10.张海清, 肖浦, 戴明之, 何勇, 聂俊, 可聚合型光引发剂 4-丙烯酰氧基二苯甲酮的光聚合性能研究. 影像科学与光化学, 2008. 26(1): p. 32-38.
11.王沛雯, 紫外光硬化丙烯酸酯的研究. 2010.
12.Andrzejewska, E., Zych-Tomkowiak, D., Andrzejewski, M., Hug, G. L., Marciniak, B., Heteroaromatic thiols as co-initiators for type II photoinitiating systems based on camphorquinone and isopropylthioxanthone. Macromolecules, 2006. 39(11): p. 3777-3785.
13.何志松, 王維廷, 探討聚酯壓克力樹脂配方對性質之影響. Journal of Science and Engineering Technology, 2017. 13(2): p. 33-43.
14.周洺偉, 陽離子型紫外光硬化樹脂之研究. 臺北科技大學化學工程研究所學位論文, 2007: p. 1-117.
15.盧崑宗, 張家偉, 單體種類及光引發劑添加量對環氧壓克力紫外線硬化型塗料性質之影響. 林業研究季刊, 2007. 29: p. 77-88.
16.肖文清, 涂伟萍, 光固化超支化聚氨酯丙烯酸酯的合成及其固化膜性能. 2009.
17.黃錫裕, UV Curable PU樹脂之光硬化, in 有機高分子研究所. 2004, 國立臺北科技大學: 台北市. p. 78.
18.Ali, M A., Ooi, TL., Salmiah, A., Ishiaku, U. S., Ishak, ZA., New polyester acrylate resins from palm oil for wood coating application. Journal of applied polymer science, 2001. 79(12): p. 2156-2163.
19.Wu, X., Zhang, J., Wu, C., Wang, G., Jiang, P., Study on tribological properties of UHMWPE irradiated by electron beam with TMPTMA and TPGDA as crosslinking agents. Wear, 2013. 297(1-2): p. 742-751.
20.Crivello, J V., Lam, JHW., Diaryliodonium salts. A new class of photoinitiators for cationic polymerization. Macromolecules, 1977. 10(6): p. 1307-1315.
21.柳冀, 王涛, 黄毓礼, 阳离子光引发剂 [CpFe (η 6-tol)] BF 4 光聚合活性及增感的研究. 影像科学与光化学, 2002. 20(3): p. 177-184.
22.聂俊, 何勇, 孙梦洲, 紫外阳离子光固化研究进展. 涂料技术与文摘, 2007. 28(10): p. 1-4.
23.李海燕, 谢川, 阳离子光引发剂研究进展. 信息记录材料, 2004. 5(4): p. 37-41.
24.ZHOU, J, ZHANG, Q, ZHANG, H, LIU, Q, WANG, W, ZHOU, Y, The development of onium salt cationic photoinitiators. Materials Review, 2011. 1: p. 003.
25.ZHONG, Y., WANG, X. W., WANG, S. H., FENG, L. B., LI, F. F., Research Progress of Onium Salt Photoinitiators for Cationic Polymerization [J]. Information Recording Materials, 2010. 2: p. 009.
26.Allen, N. S., Photoinitiators for UV and visible curing of coatings: mechanisms and properties. Journal of Photochemistry and Photobiology A: chemistry, 1996. 100(1-3): p. 101-107.
27.Decker, C., Kinetic study and new applications of UV radiation curing. Macromolecular Rapid Communications, 2002. 23(18): p. 1067-1093.
28.Crivello, J. V., Lam, JHW., Photoinitiated cationic polymerization with triarylsulfonium salts. Journal of Polymer Science Part A: Polymer Chemistry, 1979. 17(4): p. 977-999.
29.Crivello, JV., Lam, JHW., Dye‐sensitized photoinitiated cationic polymerization. Journal of Polymer Science Part A: Polymer Chemistry, 1978. 16(10): p. 2441-2451.
30.HAN, J. F., Lu, S., WANG, Z. P., Effect of photoinitiator on free radical UV-curing reaction [J]. Applied Science and Technology, 2006. 4: p. 018.
31.Davidson, R St., The chemistry of photoinitiators—some recent developments. Journal of Photochemistry and Photobiology A: Chemistry, 1993. 73(2): p. 81-96.
32.Kecici, Z., Babaoglu, S., Temel, G., Methacrylated benzophone as triple functional compound for the synthesis of partially crosslinked copolymers. Progress in Organic Coatings, 2018. 115: p. 138-142.
33.Fouassier, J. P., Lalevée, J., Three-component photoinitiating systems: towards innovative tailor made high performance combinations. Rsc Advances, 2012. 2(7): p. 2621-2629.
34.Ley, C., Carré, C., Ibrahim, A., Allonas, X., Application of High Performance Photoinitiating Systems for Holographic Grating Recording. in Holographic Materials and Optical Systems. 2017, InTech.
35.Crivello, JV., Dietliker, K., Photoinitiators for free radical cationic & anionic photopolymerisation. 1998.
36.Green, W A., Industrial photoinitiators: a technical guide. 2010: CRC Press.
37.Hayashi, T., Maeda, K., Preparation of a new phototropic substance. Bulletin of the Chemical Society of Japan, 1960. 33(4): p. 565-566.
38.Qin, XZ., Liu, A., Trifunac, AD., Krongauz, VV., Photodissociation of hexaarylbiimidazole. 1. Triplet-state formation. The Journal of Physical Chemistry, 1991. 95(15): p. 5822-5826.
39.Liu, A. D., Trifunac, A. D., Krongauz, V. V., Photodissociation of hexaarylbiimidazole. 2. Direct and sensitized dissociation. The Journal of Physical Chemistry, 1992. 96(1): p. 207-211.
40.朱晓丹, 王克敏, 钱晓春, 聂俊, 马贵平, 丙烯酸酯单体的邻氯代六芳基双咪唑复合光引发聚合动力学研究. 辐射研究与辐射工艺学报, 2012. 30(5): p. 268-273.
41.WANG, B. H., CAO, W.R., SHENTU, B. Q., Synthesis and Application of Novel Hexaarylbiimidazole Photoinitiator. Information Recording Materials, 2010. 5: p. 004.
42.Sheets, T. M., Photoimaging composition containing admixture of leuco dye and 2, 4, 5-triphenylimidazolyl dimer. 1986, Google Patents.
43.Shi, Y., Wang, B., Jiang, X., Yin, J., Kaji, M., Yori, H., Photoinitiation properties of heterocyclic hexaarylbiimidazoles with high UV‐vis absorbance. Journal of applied polymer science, 2007. 105(4): p. 2027-2035.
44.胡建琪, 应明友, 钱晓春, 吴士荣, 张胜文, 刘仁, 江金强, 刘晓亚, 六芳基双咪唑复合光引发体系的研究及其在液态光致抗蚀剂中的应用. 信息记录材料, 2008. 9(4): p. 46-51.
45.Arsu, N., Aydin, M., Yagci, Y., Jockusch, S., Turro, N. J, One component thioxanthone based Type II photoinitiators. Photochemistry and UV curing: new trends. Kerala: Research Signpost, 2006: p. 1-13.
46.Zhao, C., Yang, Y., Li, L., Xu, W., Feng, S., Photopolymerization of MMA initiated by cyanine dye and hexaarylbiimidazole. Chinese journal of polymer science, 1998. 16: p. 310-315.
47.Xu, JQ., Gao, F., Yang, YY., Kinetic and applied study of UV light photosensitive initiating polymerization of methyl% methacrylate by bilmidazole photosensitive system. Photographic Science and Photochemistry, 1999. 17(3): p. 247.
48.Awokola, M., Lenhard, W., Löffler, H., Flosbach, C., Frese, P., UV crosslinking of acryloyl functional polymers in the presence of oxygen. Progress in organic coatings, 2002. 44(3): p. 211-216.
49.Balta, D. K., Keskin, S., Karasu, F., Arsu, N., Quinoxaline derivatives as photoinitiators in UV-cured coatings. Progress in Organic Coatings, 2007. 60(3): p. 207-210.
50.Gauthier, MA., Stangel, I., Ellis, TH., Zhu, XX., Oxygen inhibition in dental resins. Journal of dental research, 2005. 84(8): p. 725-729.
51.Ikeda, S., Murata, S., Photolysis of N-phenylglycines sensitized by polycyclic aromatic hydrocarbons: Effects of sensitizers and substituent groups and application to photopolymerization. Journal of Photochemistry and Photobiology A: Chemistry, 2002. 149(1-3): p. 121-130.
52.Lee, T.Y., Guymon, CA., Jönsson, E S., Hoyle, C. E, The effect of monomer structure on oxygen inhibition of (meth) acrylates photopolymerization. Polymer, 2004. 45(18): p. 6155-6162.
53.Studer, K., Decker, C., Beck, E., Schwalm, R., Overcoming oxygen inhibition in UV-curing of acrylate coatings by carbon dioxide inerting, Part I. Progress in Organic Coatings, 2003. 48(1): p. 92-100.
54.Studer, K., Decker, C., Beck, E., Schwalm, R., Overcoming oxygen inhibition in UV-curing of acrylate coatings by carbon dioxide inerting: Part II. Progress in Organic Coatings, 2003. 48(1): p. 101-111.
55.郭耀凱, 張頁式PVC平版印刷UV光源最佳設置模式之研究, in 印刷傳播研究所. 2001, 中國文化大學: 台北市. p. 210.
56.Kou, H., Asif, A., Shi, W., Photopolymerization kinetics of hyperbranched acrylated aromatic polyester. Journal of applied polymer science, 2003. 89(6): p. 1500-1504.
57.Kunwong, D., Sumanochitraporn, N., Kaewpirom, S., Curing behavior of a UV-curable coating based on urethane acrylate oligomer: the influence of reactive monomers. Sonklanakarin Journal of Science and Technology, 2011. 33(2): p. 201.
58.Park, Y. J., Lim, D. H., Kim, H. J., Park, D. S., Sung, I. K., UV-and thermal-curing behaviors of dual-curable adhesives based on epoxy acrylate oligomers. International Journal of Adhesion and Adhesives, 2009. 29(7): p. 710-717.
59.Tasic, S., Bozic, B., Dunjic, B., Synthesis of new hyperbranched urethane-acrylates and their evaluation in UV-curable coatings. Progress in Organic Coatings, 2004. 51(4): p. 320-327.
60.Che, M, Giamello, E, Electron paramagnetic resonance, in Studies in Surface Science and Catalysis. 1990, Elsevier. p. B265-B332.
61.Rai, N S., Kalluraya, B., Lingappa, B., Shenoy, S., Puranic, V. G, Convenient access to 1, 3, 4-trisubstituted pyrazoles carrying 5-nitrothiophene moiety via 1, 3-dipolar cycloaddition of sydnones with acetylenic ketones and their antimicrobial evaluation. European journal of medicinal chemistry, 2008. 43(8): p. 1715-1720.
62.Wang, W. H., Hu, J., Study on the UV Photosensitive of Hexaarylbiimidazole Photoinitiator System. in Applied Mechanics and Materials. 2012. Trans Tech Publ.
63.Husár, B., Ligon, S. C., Wutzel, H., Hoffmann, H., Liska, R., The formulator's guide to anti-oxygen inhibition additives. Progress in Organic Coatings, 2014. 77(11): p. 1789-1798.
64.Gabbott, P., Principles and applications of thermal analysis. 2008: John Wiley & Sons.
65.Ying, S., Determination of Purity of Crystallization Organic Compounds by DSC Thermal Analysis Technology [J]. Guangxi Chemical Industry, 2002. 2: p. 014.
66.王彦飞, 黄岐汕, 李福涛, 童宏, DSC 法测定联苯的热力学性质与纯度. 2013.
67.Widmann, G., Scherrer, O., A new program for DSC purity analysis. Journal of thermal analysis, 1991. 37(8): p. 1957-1964.
68.何娜, HOMO-LUMO 能隙对分子稳定性的判定. 都市家教: 下半月, 2014(5): p. 179-179.
69.Zhang, J., Zivic, N., Dumur, F., Xiao, P., Graff, B., Gigmes, D., Fouassier, J. P., Lalevée, J., A benzophenone‐naphthalimide derivative as versatile photoinitiator of polymerization under near UV and visible lights. Journal of Polymer Science Part A: Polymer Chemistry, 2015. 53(3): p. 445-451.
70.Zhang, J., Lalevée, J., Mou, X., Morlet-Savary, F., Graff, B., Xiao, P, N-Phenylglycine as a Versatile Photoinitiator under Near-UV LED. Macromolecules, 2018.
71.Rehm, D.,Weller, A., Kinetics of fluorescence quenching by electron and H‐atom transfer. Israel Journal of Chemistry, 1970. 8(2): p. 259-271.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top