|
[1] Sano, T., et al. "Radical lymphadenectomy in the management of early gastric cancer." Br. J. Surg. 84.4 (1997): 581-82. [2] Webb, A., et al. "Randomized trial comparing epirubicin, cisplatin, and fluorouracil versus fluorouracil, doxorubicin, and methotrexate in advanced esophagogastric cancer. " J. Clin. Oncol. 15.1 (1997):261-67. [3] Findlay, M., et al. "A phase II study in advanced gastro-esophageal cancer using epirubicin and cisplatin in combination with continuous infusion 5-fluorouracil (ECF)." Ann. Oncol. 5.7 (1994): 609-16. [4] Safran, H., et al. "Paclitaxel and concurrent radiation for gastric cancer." Int. J. Radiat. Oncol. Biol. Phys. 46.4 (2000): 889-94. [5] Roth, A. D. "Curative treatment of gastric cancer: towards a multidisciplinary approach?" Crit Rev. Oncol. Hematol. 46.1 (2003): 59-100. [6] Bangham, A. D., M. M. Standish, and J. C.Watkins. "Diffusion of univalent ions across the lamellae of swollen phospholipids." J. Mol. Biol. 13.1 (1965): 238-52. [7] Sessa, G. and G. Weissmann. "Phospholipid spherules (liposomes) as a model for biological membranes." J. Lipid Res. 9.3 (1968): 310-18. [8] Frezard, F. and A. Garnier-Suillerot. "Permeability of lipid bilayer to anthracycline derivatives. Role of the bilayer composition and of the temperature." Biochim. Biophys. Acta 1389.1 (1998): 13-22. [9] Chang, R., S. Nir, and F. R. Poulain. "Analysis of binding and membrane destabilization of phospholipid membranes by surfactant apoprotein B." Biochim. Biophys. Acta 1371.2 (1998): 254-64. [10] Cullis, P. R., A. Chonn, and S. C. Semple. "Interactions of liposomes and lipid-based carrier systems with blood proteins: Relation to clearance behaviour in vivo." Adv. Drug Deliv. Rev. 32.1-2 (1998): 3-17. [11] Weinstein, J. N. and L. D. Leserman. "Liposomes as drug carriers in cancer chemotherapy." Pharmacol. Ther. 24.2 (1984): 207-33. [12] Allen, T. M., et al. "Liposomes containing synthetic lipid derivatives of poly(ethylene glycol) show prolonged circulation half-lives in vivo." Biochim. Biophys. Acta 1066.1 (1991): 29-36. [13] Lasic, D. D., et al. "Sterically stabilized liposomes: a hypothesis on the molecular origin of the extended circulation times." Biochim. Biophys. Acta 1070.1 (1991): 187-92. [14] Klibanov, A. L., et al. "Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes." FEBS Lett. 268.1 (1990): 235-37. [15] Torchilin, V. P., et al. "Targeted accumulation of polyethylene glycol-coated immunoliposomes in infarcted rabbit myocardium." FASEB J. 6.9 (1992): 2716-19. [16] Blume, G., et al. "Specific targeting with poly(ethylene glycol)-modified liposomes: coupling of homing devices to the ends of the polymeric chains combines effective target binding with long circulation times." Biochim. Biophys. Acta 1149.1 (1993): 180-84. [17] Torchilin, V. P., et al. "p-Nitrophenylcarbonyl-PEG-PE-liposomes: fast and simple attachment of specific ligands, including monoclonal antibodies, to distal ends of PEG chains via p-nitrophenylcarbonyl groups." Biochim. Biophys. Acta 1511.2 (2001): 397-411. [18] Drummond, D. C., et al. "Optimizing liposomes for delivery of chemotherapeutic agents to solid tumors." Pharmacol. Rev. 51.4 (1999): 691-743. [19] Torchilin, V. P. "Recent advances with liposomes as pharmaceutical carriers." Nat. Rev. Drug Discov. 4.2 (2005): 145-60. [20] Speth, P. A., Q. G. van Hoesel, and C. Haanen. "Clinical pharmacokinetics of doxorubicin." Clin. Pharmacokinet. 15.1 (1988): 15-31. [21] Gabizon, A. and F. Martin. "Polyethylene glycol-coated(pegylated) liposomal doxorubicin. Rationale for use in solid tumours." Drugs 54 Suppl 4 (1997): 15-21. [22] Ishida, T., H. Harashima, and H. Kiwada. "Liposome clearance." Biosci. Rep. 22.2 (2002): 197-224. [23] Hofheinz, R. D., et al. "Liposomal encapsulated anti-cancer drugs." Anticancer Drugs 16.7 (2005): 691-707. [24] Krulich, L., A. P. Dhariwal, and S. M. McCann. "Stimulatory and inhibitory effects of purified hypothalamic extracts on growth hormone release from rat pituitary in vitro." Endocrinology 83.4 (1968): 783-90. [25] Brazeau, P., et al. "Hypothalamic polypeptide that inhibits the secretion of immunoreactive pituitary growth hormone." Science 179.68 (1973): 77-79. [26] Funckes, C. L., et al. "Cloning and characterization of a mRNA-encoding rat preprosomatostatin." J. Biol. Chem. 258.14 (1983): 8781-87. [27] Ballian, N., F. C. Brunicardi, and X. P. Wang. "Somatostatin and its receptors in the development of the endocrine pancreas." Pancreas 33.1 (2006): 1-12. [28] Reichlin, S. "Somatostatin." N. Engl. J. Med. 309.24 (1983): 1495-501. [29] Schally, A. V. "Oncological applications of somatostatin analogues." Cancer Res. 48.24 Pt 1 (1988): 6977-85. [30] Lamberts, S. W., E. P. Krenning, and J. C. Reubi. "The role of somatostatin and its analogs in the diagnosis and treatment of tumors." Endocr. Rev. 12.4 (1991): 450-82. [31] Benuck, M. and N. Marks. "Differences in the degradation of hypothalamic releasing factors by rat and human serum." Life Sci. 19.8 (1976): 1271-76. [32] Marks, N., F. Stern, and M. Benuck. "Correlation between biological potency and biodegradation of a somatostatin analogue." Nature 261.5560 (1976): 511-12. [33] Polonsky, K. S., et al. "Hepatic and renal metabolism of somatostatin-like immunoreactivity. Simultaneous assessment in the dog."J. Clin. Invest 68.5 (1981): 1149-57. [34] Lamberts, S. W., et al. "Octreotide." N. Engl. J. Med. 334.4 (1996): 246-54. [35] Nagy, A., et al. "Design, synthesis, and in vitro evaluation of cytotoxic analogs of bombesin-like peptides containing doxorubicin or its intensely potent derivative, 2-pyrrolinodoxorubicin." Proc. Natl. Acad. Sci. U.S.A 94.2 (1997): 652-56. [36] Nagy, A., et al. "Synthesis and biological evaluation of cytotoxic analogs of somatostatin containing doxorubicin or its intensely potent derivative, 2-pyrrolinodoxorubicin." Proc. Natl. Acad. Sci. U.S.A 95.4 (1998): 1794-99. [37] Buscail, L., et al. "Stimulation of tyrosine phosphatase and inhibition of cell proliferation by somatostatin analogues: mediation by human somatostatin receptor subtypes SSTR1 and SSTR2." Proc. Natl. Acad. Sci. U.S.A 91.6 (1994): 2315-19. [38] Buscail, L., et al. "Inhibition of cell proliferation by the somatostatin analogue RC-160 is mediated by somatostatin receptor subtypes SSTR2 and SSTR5 through different mechanisms." Proc. Natl. Acad. Sci. U.S.A 92.5 (1995): 1580-84. [39] Liebow, C., et al. "Somatostatin analogues inhibit growth of pancreatic cancer by stimulating tyrosine phosphatase." Proc. Natl. Acad. Sci. U.S.A 86.6 (1989): 2003-07. [40] Bell, G. I., et al. "Molecular biology of somatostatin receptors." Ciba Found. Symp. 190 (1995): 65-79. [41] Cordelier, P., et al. "Characterization of the antiproliferative signal mediated by the somatostatin receptor subtype sst5." Proc. Natl. Acad. Sci. U.S.A 94.17 (1997): 9343-48. [42] Buscail, L., et al. "Inhibition of cell proliferation by the somatostatin analogue RC-160 is mediated by somatostatin receptor subtypes SSTR2 and SSTR5 through different mechanisms."Proc. Natl. Acad. Sci. U.S.A 92.5 (1995): 1580-84. [43] Sharma, K., Y. C. Patel, and C. B. Srikant. "Subtype-selective induction of wild-type p53 and apoptosis, but not cell cycle arrest, by human somatostatin receptor 3." Mol. Endocrinol. 10.12 (1996): 1688-96. [44] Yasuda, K., et al. "Cloning of a novel somatostatin receptor, SSTR3, coupled to adenylylcyclase." J. Biol. Chem. 267.28 (1992): 20422-28. [45] Breder, C. D., et al. "Differential expression of somatostatin recetor subtypes in brain." J. Neurosci. 12.10 (1992): 3920-34. [46] Bauer, W., et al. "SMS 201-995: a very potent and selective octapeptide analogue of somatostatin with prolonged action." Life Sci. 31.11 (1982): 1133-40. [47] Lamberts, S. W., et al. "The somatostatin analog SMS 201-995 induces long-acting inhibition of growth hormone secretion without rebound hypersecretion in acromegalic patients." J. Clin. Endocrinol. Metab 60.6 (1985): 1161-65. [48] Lamberts, S. W., E. P. Krenning, and J. C. Reubi. "The role of somatostatin and its analogs in the diagnosis and treatment of tumors." Endocr. Rev. 12.4 (1991): 450-82. [49] Kvols, L. K. and E. A. Woltering. "Role of somatostatin analogs in the clinical management of non-neuroendocrine solid tumors." Anticancer Drugs 17.6 (2006): 601-08. [50] Dogliotti, L., et al. "The clinical management of neuroendocrine tumors with long-acting repeatable (LAR) octreotide: comparison with standard subcutaneous octreotide therapy." Ann. Oncol. 12 Suppl 2 (2001): S105-S109. [51] Gorden, P., et al. "NIH conference. Somatostatin and somatostatin analogue (SMS 201-995) in treatment of hormone-secreting tumors of the pituitary and gastrointestinal tract and non-neoplastic diseases of the gut." Ann. Intern. Med. 110.1 (1989): 35-50. [52] Huang, C. M., Y. T. Wu, and S. T. Chen. "Targeting delivery of paclitaxel into tumor cells via somatostatin receptor endocytosis." Chem. Biol. 7.7 (2000): 453-61. [53] Carmeliet, P. "Angiogenesis in life, disease and medicine." Nature 438.7070 (2005): 932-36. [54] Risau, W. "Mechanisms of angiogenesis." Nature 386.6626 (1997): 671-74. [55] Patan, S., B. Haenni, and P. H. Burri. "Implementation of intussusceptive microvascular growth in the chicken chorioallantoic membrane (CAM)." Microvasc. Res. 53.1 (1997): 33-52. [56] Madeddu, P. "Therapeutic angiogenesis and vasculogenesis for tissue regeneration." Exp. Physiol 90.3 (2005): 315-26. [57] Holmgren, L. "Antiangiogenis restricted tumor dormancy." Cancer Metastasis Rev. 15.2 (1996): 241-45. [58] Hanahan, D. and J. Folkman. "Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis." Cell 86.3 (1996):353-64. [59] Folkman, J., et al. "Induction of angiogenesis during the transition from hyperplasia to neoplasia." Nature 339.6219 (1989): 58-61. [60] Holash, J., S. J. Wiegand, and G. D. Yancopoulos. "New model of tumor angiogenesis: dynamic balance between vessel regression and growth mediated by angiopoietins and VEGF." Oncogene 18.38 (1999): 5356-62. [61] Weidner, N., et al. "Tumor angiogenesis and metastasis--correlation in invasive breast carcinoma." N. Engl. J. Med. 324.1 (1991): 1-8. [62] Hashizume, H., et al. "Openings between defective endothelial cells explain tumor vessel leakiness." Am. J. Pathol. 156.4 (2000): 1363-80. [63] Yurchenco, P. D. and J. C. Schittny. "Molecular architecture of basement membranes." FASEB J. 4.6 (1990): 1577-90. [64] Chen, C. S., et al. "Geometric control of cell life and death." Science 276.5317 (1997): 1425-28. [65] Kornblihtt, A. R., et al. "Primary structure of human fibronectin: differential splicing may generate at least 10 polypeptides from a single gene." EMBO J. 4.7 (1985): 1755-59. [66] Suzuki, S., et al. "Complete amino acid sequence of human vitronectin deduced from cDNA. Similarity of cell attachment sites in vitronectin and fibronectin." EMBO J. 4.10 (1985): 2519-24. [67] Sasaki, M., et al. "Sequence of the cDNA encoding the laminin B1 chain reveals a multidomain protein containing cysteine-rich repeats. " Proc. Natl. Acad. Sci. U.S.A 84.4 (1987): 935-39. [68] Sasaki, M. and Y. Yamada. "The laminin B2 chain has a multidomain structure homologous to the B1 chain." J. Biol. Chem. 262.35 (1987): 17111-17. [69] Ruoslahti, E. and M. D. Pierschbacher. "New perspectives in cell adhesion: RGD and integrins." Science 238.4826 (1987): 491-97. [70] Takeichi, M. "Cadherin cell adhesion receptors as a morphogenetic regulator." Science 251.5000 (1991): 1451-55. [71] Springer, T. A. "Adhesion receptors of the immune system." Nature 346.6283 (1990): 425-34. [72] Hynes, R. O. "Integrins: a family of cell surface receptors." Cell 48.4 (1987): 549-54. [73] Springer, T. A. and L. A. Lasky. "Cell adhesion. Sticky sugars for selectins." Nature 349.6306 (1991): 196-97. [74] Dubey, P. K., et al. "Liposomes modified with cyclic RGD peptide for tumor targeting." J. Drug Target 12.5 (2004): 257-64. [75] Gupta, A. S., et al. "RGD-modified liposomes targeted to activated platelets as a potential vascular drug delivery system." Thromb. Haemost. 93.1 (2005): 106-14. [76] Hynes, R. O. "Integrins: bidirectional, allosteric signaling machines." Cell 110.6 (2002): 673-87. [77] Humphries, M. J. "Integrin structure." Biochem. Soc. Trans. 28.4 (2000): 311-39. [78] Brooks, P. C. "Role of integrins in angiogenesis." Eur. J. Cancer 32A.14 (1996): 2423-29. [79] Stromblad, S., et al. "Suppression of p53 activity and p21WAF1/CIP1 expression by vascular cell integrin alphaVbeta3 during angiogenesis." J. Clin. Invest 98.2 (1996): 426-33. [80] Pattillo, C.B., et al. "Targeting of the antivascular drug combretastatin to irradiated tumors results in tumor growth delay. " Pharm Res. 22.7(2005): 1117-20. [81] 國家中醫藥管理局 <中華本草> 編委會著,中華本草( 7 ),上海科學技術出版社,169~186 頁。 [82] 劉接寶和洪禎徽主編,臨床實驗用彩色中藥大典,立德出版社,73 年六月初版。 [83] Wang N, et al. "A new platelate aggregation inhibitor from Salvia miltiorrhiza." Planta Med. 55.4(1989): 390-91. [84] Lee,C.M., et al. "Miltirone, a central benzodiazepine receptor partial agonist from a Chinese medicinal herb Salvia miltiorrhiza." Neurosci. Lett. 127.2(1991): 237-41. [85] Liu,J., et al. "Effect of Salvia miltiorrhiza on aflatoxin B1-induced oxidative stress in cultured rat hepatocytes." Free Radic. Res. 31.6(1999): 559-68. [86] Nan,J.X. et al. "Anti-fibrotic effects of a hot-water extract from Salvia miltiorrhiza roots on liver fibrosis induced by biliary obstruction in rats." J. Pharm. Pharmacol. 53.2(2001): 197-204. [87] Lee,D.S., et al. "Antibacterial activities of cryptotanshinone and dihydrotanshinone I from a medicinal herb, Salvia miltiorrhiza Bunge." Biosci. Biotechnol. Biochem., 63.12(1997): 2236-39. [88] Lee,D.S., et al. "Biological activity of dihydrotanshinone I: effect on apoptosis." J. Biosci. Bioeng. 89.3(2000): 292-293. [89] Hao,Y.L., et al. "In-vitro cytotoxicity, in-vivo biodistribution and anti-tumour effect of PEGylated liposomal topotecan." J. Pharm. Pharmacol. 57.10(2005): 1279-87. [90] Campbell,P.I. "Toxicity of some charged lipids used in liposome preparations." Cytobios 37.145(1983): 21-26. [91] Schiffelers,R.M. "Anti-tumor efficacy of tumor vasculature-targeted liposomal doxorubicin." J. Control Release 91.1-2(2003): 115-22. [92] Xiong,X.B., et al. "Enhanced intracellular delivery and improved antitumor efficacy of doxorubicin by sterically stabilized liposomes modified with a synthetic RGD mimetic." J. Control Release 107.2(2005): 262-75. [93] Szepeshazi,K. "Preclinical evaluation of therapeutic effects of targeted cytotoxic analogs of somatostatin and bombesin on human gastric carcinomas." Cancer 98.7(2003): 1401-10. [94] Syrigos,K.N., et al. "Biodistribution and pharmacokinetics of 111In-dTPA-labelled pegylated liposomes after intraperitoneal injection." Acta Oncol. 42.2(2003): 147-53. [95] Liu,S. "Radiolabeled multimeric cyclic RGD peptides as integrin alpha v beta 3 targeted radiotracers for tumor imaging." Mol. Pharm. 3.5(2006): 272-87. [96] Sapra P. et al. "Ligand-targeted liposomes for cancer treatment." Curr. Drug Deliv. 2.4(2005): 369-81. [97] Park,J.W. "Liposome-based drug delivery in breast cancer treatment." Breast Cancer Res. 4.3(2002): 95-99. [98] Lee,R.J. et al. "Delivery of liposomes into cultured KB cells via folate receptor-mediated endocytosis." J. Biol. Chem. 269.5(1994): 3198-3204. [99] Holig,P. et al. "Novel RGD lipopeptides for the targeting of liposomes to integrin-expressing endothelial and melanoma cells." Protein Eng Des Sel. 17.5(2004): 433-41. [100] Goren,D. et al. "Nuclear delivery of doxorubicin via folate-targeted liposomes with bypass of multidrug-resistance efflux pump." Clin. Cancer Res. 6.5(2000): 1949-57. [101] Chung,T.W. et al. "Enhancing growth human endothelial cells on Arg-Gly-Asp (RGD) embedded poly (epsilon-caprolactone) (PCL) surface with nanometer scale of surface disturbance." J. Biomed. Mater. Res. A 72.2(2005): 213-19.
|