跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.181) 您好!臺灣時間:2025/12/16 16:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊子聖
研究生(外文):Tzu-Sheng Yang
論文名稱:複合型標靶式與單一型標靶式微脂粒藥物對於胃癌之治療與評估
論文名稱(外文):Evaluation of multi-targeted and single-targeted liposomal drug treating for gastric cancer.
指導教授:方旭偉方旭偉引用關係劉得任劉得任引用關係
口試委員:林時宜黃義侑鍾次文
口試日期:2007-06-29
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:生物科技研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:65
中文關鍵詞:liposomecancer chemotherapy
外文關鍵詞:liposomecancerchemotherapy
相關次數:
  • 被引用被引用:1
  • 點閱點閱:315
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
就癌症藥物載體而言,利用微脂粒包覆抗癌藥物用以治療癌症一直是臨床上很有興趣之研究。本研究首先利用光反應作用先行合成一專一性標靶分子,再利用標靶分子所形成之標靶微脂粒包覆癌症藥物以開發所謂標靶抗癌微脂粒。
首先,我們將Octreotide 與RGD 分子分別與DSPE-PEG做鍵結,再將DSPE-
PEG-Octerotide以及DSPE-PEG-RGD分別嵌入微脂粒脂雙層表面,形成所謂Octreotide(RGD)-PEG-liposome;其中,微脂粒內所包覆之抗癌藥物為二氫丹參酮。
實驗結果顯示,標靶分子Octerotide及RGD分別與DSPE-PEG鍵結之部份,其接枝率分別為69%及85%。此外鍵結後之標靶分子分別製作成不同組成之微脂粒(分別為Octreotide-PEG-liposome, RGD-PEG-liposome, PEG-liposome及Octreotide/RGD-PEG-liposome),對於胃癌細胞株AGS進行細胞毒性以及腫瘤移殖老鼠實驗。在24小時的細胞毒性實驗部份,Octerotide/RGD-PEG-liposome抑制細胞增生的效果明顯優於其他組成(其細胞存活率分別為Octreotide:12.8%、RGD:20.1%, PEG:15.7%, Octreotide/RGD:2.3%);在腫瘤移殖老鼠的實驗裡,使用Octerotide/RGD-PEG-liposome也有明顯抑制腫瘤細胞的生長(給藥後腫瘤細胞的體積與原始大小相比為Octreotide:64.8%, RGD:102.9%, PEG:92.8%, Octreotide/RGD:61.2%)。
本研究結果認為,使用複合型標靶式微脂粒藥物,其抑制腫瘤細胞增生的效果更優於使用單一型標靶式微脂粒藥物,我們認為複合型標靶式微脂粒將可會是未來微脂粒發展的新方向。
Liposome as a carrier encapsulate anti-cancer drugs has always regard as an interesting topic in clinical research. In this study, we develop a targeting anti-cancer liposome that has a specific target molecule by synthesis, which has potential to directly target to the specific cancer. First, we made Octreotide and RGD respectively conjugated with DSPE-PEG, and then we made DSPE-PEG-Octreotide and DSPE-PEG-RGD integrated to lipid bilayer, which is called Octreotide(RGD)-PEG-liposome, also we encapsulated dihydrotanshinone I as the anti-cancer drug.The results showed that the graft density of DSPE-PEG-Octreotide and DSPE-PEG-RGD was 69% and 85%. In addition, we made liposome with different composition (Octreotide-PEG-liposome, RGD-PEG-liposome, PEG-liposome, and Octreotide/RGD-PEG-liposome, with 10mM lipid concentration). The anti-cancer activity was investigating by in virto and in vivo test. The in vitro study we used different liposomes treat with AGS human gastric adenocarcinoma. Cytotoxicity effect showed that Octreotide/RGD-PEG-liposome is obviously superior to other component (the survival rate of Octreotide:12.8%, RGD:20.1%, PEG:15.7% and Octreotide/RGD:2.3%, respectively) after 24 hours treatment. Also in vivo study result showed that tumor bearing mice i.v. injected with Octreotide/RGD-PEG-liposome also evident to inhibit growth of tumor size (the tumor volume after treatment/original volume of Octreotide:64.8%, RGD:102.9%, PEG:92.8%, Octreotide/RGD:61.2%, respectively).
In these results, multi-targeted liposomal drug has better potential to inhibit tumor cell proliferation than single-targeted liposomal drug, it may be a new direction of liposomal development in the future.
中文摘要………………………………………………………………………i
英文摘要………………………………………………………………………ii
誌謝……………………………………………………………………………iii
目錄……………………………………………………………………………iv
表目錄 v
圖目錄 vi
第一章 緒論 1
1.1 前言 1
1.1.1 胃癌化療的演進 1
1.2 微脂粒介紹 3
1.2.1 微脂粒 3
1.2.2 微脂粒的分類 4
1. 多層微泡微脂粒 4
2. 單層大微泡微脂粒 4
3. 單層中微泡微脂粒 4
4. 單層小微泡微脂粒 4
1.2.3 微脂粒現今應用的分類方式 4
1. 傳統式微脂粒 5
2. 帶電式微脂粒 5
3. 立體穩定微脂粒 5
4. 標靶式微脂粒 5
1.2.4 標靶式微脂粒藥物的發展 8
1.2.5 微脂粒與化學治療 9
1.3 體抑素介紹 11
1.3.1 體抑素 11
1.3.2 體抑素受體 11
1.3.3 Octreotide 14
1.4 血管新生介紹 15
1.4.1 血管新生 15
1.4.2 血管新生的兩種形式 15
1. 生長的血管新生 15
2. 非生長的血管新生 16
1.4.3 腫瘤與血管新生 16
1.4.4 細胞外基質 17
1.4.5 黏合分子 19
1.4.6 結合蛋白與 RGD 序列 19
1.5 丹參及丹參萃取物 21
第二章 研究動機 22
第三章 材料與方法 23
3.1 材料 23
3.2 儀器 24
3.3 實驗方法 25
3.3.1 DSPE-PEG接枝方式 25
3.3.2 接枝後的分析 25
3.3.3 微脂粒之製備 26
3.3.4 二氫丹參酮溶液之製備 27
3.3.5 細胞毒性及細胞增生測量方法 27
3.3.6 人類胃癌細胞異種移植入鼠體方式 27
3.3.7 活體內抗癌效果 28
3.3.8 體內細胞增生測量方法 29
3.3.9 體內血管測量方法 29
第四章 結果 30
4.1 DSPE-PEG接枝 30
4.1.1檢量線製作 30
4.1.2 DSPE-PEG 接枝率分析 31
1. DSPE-PEG-RGD接枝率 31
2. DSPE-PEG-Octreotide接枝率 31
4.2微脂粒之特性 32
4.3細胞毒性 33
4.3.1 二氫丹參酮對於胃癌細胞(AGS)之細胞毒性 33
4.3.2 不同成分微脂粒對於胃癌細胞(AGS)之細胞毒性 34
1. 不同成分微脂粒在10mM濃度下對於胃癌細胞之細胞毒性 34
2. 不同成分微脂粒在5mM濃度下對於胃癌細胞之細胞毒性 36
3. 不同組成微脂粒對於胃癌細胞型態之影響 37
4.4 體內毒性 40
4.4.1 各組成微脂粒在體內之體重變化 40
4.4.2 各組成微脂粒在體內之抗癌效應 41
1. Control組 41
2. Free組 41
3. PEG組 41
4. Octreotide組 41
5. RGD組 41
6. RGD/Octreotide組 42
4.4.3 組織免疫染色 44
第五章 討論 47
5.1 微脂粒包覆二氫丹參酮對於細胞之毒性 47
5.2 單純微脂粒對於細胞之毒性 47
5.3複合型標靶式微脂粒與單一型比較 48
5.4 胃癌細胞的轉殖 49
5.5 微脂粒腹腔注射 49
5.6 各組成微脂粒對於腫瘤之效應 50
5.7 生長激素的過度分泌 51
第六章 結論 52
參考文獻 53
[1] Sano, T., et al. "Radical lymphadenectomy in the management of early gastric cancer." Br. J. Surg. 84.4 (1997): 581-82.
[2] Webb, A., et al. "Randomized trial comparing epirubicin, cisplatin, and fluorouracil versus fluorouracil, doxorubicin, and methotrexate in advanced esophagogastric cancer. " J. Clin. Oncol. 15.1 (1997):261-67.
[3] Findlay, M., et al. "A phase II study in advanced gastro-esophageal cancer using epirubicin and cisplatin in combination with continuous infusion 5-fluorouracil (ECF)." Ann. Oncol. 5.7 (1994): 609-16.
[4] Safran, H., et al. "Paclitaxel and concurrent radiation for gastric cancer." Int. J. Radiat. Oncol. Biol. Phys. 46.4 (2000): 889-94.
[5] Roth, A. D. "Curative treatment of gastric cancer: towards a multidisciplinary approach?" Crit Rev. Oncol. Hematol. 46.1 (2003): 59-100.
[6] Bangham, A. D., M. M. Standish, and J. C.Watkins.
"Diffusion of univalent ions across the lamellae of swollen phospholipids." J. Mol. Biol. 13.1 (1965): 238-52.
[7] Sessa, G. and G. Weissmann. "Phospholipid spherules (liposomes) as a model for biological membranes." J. Lipid Res. 9.3 (1968): 310-18.
[8] Frezard, F. and A. Garnier-Suillerot. "Permeability of lipid bilayer to anthracycline derivatives. Role of the bilayer composition and of the temperature." Biochim. Biophys. Acta 1389.1 (1998): 13-22.
[9] Chang, R., S. Nir, and F. R. Poulain. "Analysis of binding and membrane destabilization of phospholipid membranes by surfactant apoprotein B." Biochim. Biophys. Acta 1371.2 (1998): 254-64.
[10] Cullis, P. R., A. Chonn, and S. C. Semple. "Interactions of liposomes and lipid-based carrier systems with blood proteins: Relation to clearance behaviour in vivo." Adv. Drug Deliv. Rev. 32.1-2 (1998): 3-17.
[11] Weinstein, J. N. and L. D. Leserman. "Liposomes as drug carriers in cancer chemotherapy." Pharmacol. Ther. 24.2 (1984): 207-33.
[12] Allen, T. M., et al. "Liposomes containing synthetic lipid derivatives of poly(ethylene glycol) show prolonged circulation half-lives in vivo." Biochim. Biophys. Acta 1066.1 (1991): 29-36.
[13] Lasic, D. D., et al. "Sterically stabilized liposomes: a hypothesis on the molecular origin of the extended circulation times." Biochim. Biophys. Acta 1070.1 (1991): 187-92.
[14] Klibanov, A. L., et al. "Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes." FEBS Lett. 268.1 (1990): 235-37.
[15] Torchilin, V. P., et al. "Targeted accumulation of polyethylene glycol-coated immunoliposomes in infarcted rabbit myocardium." FASEB J. 6.9 (1992): 2716-19.
[16] Blume, G., et al. "Specific targeting with poly(ethylene glycol)-modified liposomes: coupling of homing devices to the ends of the polymeric chains combines effective target binding with long circulation times." Biochim. Biophys. Acta 1149.1 (1993): 180-84.
[17] Torchilin, V. P., et al. "p-Nitrophenylcarbonyl-PEG-PE-liposomes: fast and simple attachment of specific ligands, including monoclonal antibodies, to distal ends of PEG chains via p-nitrophenylcarbonyl groups." Biochim. Biophys. Acta 1511.2 (2001): 397-411.
[18] Drummond, D. C., et al. "Optimizing liposomes for delivery of chemotherapeutic agents to solid tumors." Pharmacol. Rev. 51.4 (1999): 691-743.
[19] Torchilin, V. P. "Recent advances with liposomes as pharmaceutical carriers." Nat. Rev. Drug Discov. 4.2 (2005): 145-60.
[20] Speth, P. A., Q. G. van Hoesel, and C. Haanen. "Clinical pharmacokinetics of doxorubicin." Clin. Pharmacokinet. 15.1 (1988): 15-31.
[21] Gabizon, A. and F. Martin. "Polyethylene glycol-coated(pegylated) liposomal doxorubicin. Rationale for use in solid tumours." Drugs 54 Suppl 4 (1997): 15-21.
[22] Ishida, T., H. Harashima, and H. Kiwada. "Liposome clearance." Biosci. Rep. 22.2 (2002): 197-224.
[23] Hofheinz, R. D., et al. "Liposomal encapsulated anti-cancer drugs." Anticancer Drugs 16.7 (2005): 691-707.
[24] Krulich, L., A. P. Dhariwal, and S. M. McCann. "Stimulatory and inhibitory effects of purified hypothalamic extracts on growth hormone release from rat pituitary in vitro." Endocrinology 83.4 (1968): 783-90.
[25] Brazeau, P., et al. "Hypothalamic polypeptide that inhibits the secretion of immunoreactive pituitary growth hormone." Science 179.68 (1973): 77-79.
[26] Funckes, C. L., et al. "Cloning and characterization of a mRNA-encoding rat preprosomatostatin." J. Biol. Chem. 258.14 (1983): 8781-87.
[27] Ballian, N., F. C. Brunicardi, and X. P. Wang. "Somatostatin and its receptors in the development of the endocrine pancreas." Pancreas 33.1 (2006): 1-12.
[28] Reichlin, S. "Somatostatin." N. Engl. J. Med. 309.24 (1983): 1495-501.
[29] Schally, A. V. "Oncological applications of somatostatin analogues." Cancer Res. 48.24 Pt 1 (1988): 6977-85.
[30] Lamberts, S. W., E. P. Krenning, and J. C. Reubi. "The role of somatostatin and its analogs in the diagnosis and treatment of tumors." Endocr. Rev. 12.4 (1991): 450-82.
[31] Benuck, M. and N. Marks. "Differences in the degradation of hypothalamic releasing factors by rat and human serum." Life Sci. 19.8 (1976): 1271-76.
[32] Marks, N., F. Stern, and M. Benuck. "Correlation between biological potency and biodegradation of a somatostatin analogue." Nature 261.5560 (1976): 511-12.
[33] Polonsky, K. S., et al. "Hepatic and renal metabolism of somatostatin-like immunoreactivity. Simultaneous assessment in the dog."J. Clin. Invest 68.5 (1981): 1149-57.
[34] Lamberts, S. W., et al. "Octreotide." N. Engl. J. Med. 334.4 (1996): 246-54.
[35] Nagy, A., et al. "Design, synthesis, and in vitro evaluation of cytotoxic analogs of bombesin-like peptides containing doxorubicin or its intensely potent derivative, 2-pyrrolinodoxorubicin." Proc. Natl. Acad. Sci. U.S.A 94.2 (1997): 652-56.
[36] Nagy, A., et al. "Synthesis and biological evaluation of cytotoxic analogs of somatostatin containing doxorubicin or its intensely potent derivative, 2-pyrrolinodoxorubicin." Proc. Natl. Acad. Sci. U.S.A 95.4 (1998): 1794-99.
[37] Buscail, L., et al. "Stimulation of tyrosine phosphatase and inhibition of cell proliferation by somatostatin analogues: mediation by human somatostatin receptor subtypes SSTR1 and SSTR2." Proc. Natl. Acad. Sci. U.S.A 91.6 (1994): 2315-19.
[38] Buscail, L., et al. "Inhibition of cell proliferation by the somatostatin analogue RC-160 is mediated by somatostatin receptor subtypes SSTR2 and SSTR5 through different mechanisms." Proc. Natl. Acad. Sci. U.S.A 92.5 (1995): 1580-84.
[39] Liebow, C., et al. "Somatostatin analogues inhibit growth of pancreatic cancer by stimulating tyrosine phosphatase." Proc. Natl. Acad. Sci. U.S.A 86.6 (1989): 2003-07.
[40] Bell, G. I., et al. "Molecular biology of somatostatin receptors." Ciba Found. Symp. 190 (1995): 65-79.
[41] Cordelier, P., et al. "Characterization of the antiproliferative signal mediated by the somatostatin receptor subtype sst5." Proc. Natl. Acad. Sci. U.S.A 94.17 (1997): 9343-48.
[42] Buscail, L., et al. "Inhibition of cell proliferation by the somatostatin analogue RC-160 is mediated by somatostatin receptor subtypes SSTR2 and SSTR5 through different mechanisms."Proc. Natl. Acad. Sci. U.S.A 92.5 (1995): 1580-84.
[43] Sharma, K., Y. C. Patel, and C. B. Srikant. "Subtype-selective induction of wild-type p53 and apoptosis, but not cell cycle arrest, by human somatostatin receptor 3." Mol. Endocrinol. 10.12 (1996): 1688-96.
[44] Yasuda, K., et al. "Cloning of a novel somatostatin receptor, SSTR3, coupled to adenylylcyclase." J. Biol. Chem. 267.28 (1992): 20422-28.
[45] Breder, C. D., et al. "Differential expression of somatostatin recetor subtypes in brain." J. Neurosci. 12.10 (1992): 3920-34.
[46] Bauer, W., et al. "SMS 201-995: a very potent and selective octapeptide analogue of somatostatin with prolonged action." Life Sci. 31.11 (1982): 1133-40.
[47] Lamberts, S. W., et al. "The somatostatin analog SMS 201-995 induces long-acting inhibition of growth hormone secretion without rebound hypersecretion in acromegalic patients." J. Clin. Endocrinol. Metab 60.6 (1985): 1161-65.
[48] Lamberts, S. W., E. P. Krenning, and J. C. Reubi. "The role of somatostatin and its analogs in the diagnosis and treatment of tumors." Endocr. Rev. 12.4 (1991): 450-82.
[49] Kvols, L. K. and E. A. Woltering. "Role of somatostatin analogs in the clinical management of non-neuroendocrine solid tumors." Anticancer Drugs 17.6 (2006): 601-08.
[50] Dogliotti, L., et al. "The clinical management of neuroendocrine tumors with long-acting repeatable (LAR) octreotide: comparison with standard subcutaneous octreotide therapy." Ann. Oncol. 12 Suppl 2 (2001): S105-S109.
[51] Gorden, P., et al. "NIH conference. Somatostatin and somatostatin analogue (SMS 201-995) in treatment of hormone-secreting tumors of the pituitary and gastrointestinal tract and non-neoplastic diseases of the gut." Ann. Intern. Med. 110.1 (1989): 35-50.
[52] Huang, C. M., Y. T. Wu, and S. T. Chen. "Targeting delivery of paclitaxel into tumor cells via somatostatin receptor endocytosis." Chem. Biol. 7.7 (2000): 453-61.
[53] Carmeliet, P. "Angiogenesis in life, disease and medicine." Nature 438.7070 (2005): 932-36.
[54] Risau, W. "Mechanisms of angiogenesis." Nature 386.6626 (1997): 671-74.
[55] Patan, S., B. Haenni, and P. H. Burri. "Implementation of intussusceptive microvascular growth in the chicken chorioallantoic membrane (CAM)." Microvasc. Res. 53.1 (1997): 33-52.
[56] Madeddu, P. "Therapeutic angiogenesis and vasculogenesis for tissue regeneration." Exp. Physiol 90.3 (2005): 315-26.
[57] Holmgren, L. "Antiangiogenis restricted tumor dormancy." Cancer Metastasis Rev. 15.2 (1996): 241-45.
[58] Hanahan, D. and J. Folkman. "Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis." Cell 86.3 (1996):353-64.
[59] Folkman, J., et al. "Induction of angiogenesis during the transition from hyperplasia to neoplasia." Nature 339.6219 (1989): 58-61.
[60] Holash, J., S. J. Wiegand, and G. D. Yancopoulos. "New model of tumor angiogenesis: dynamic balance between vessel regression and growth mediated by angiopoietins and VEGF." Oncogene 18.38 (1999): 5356-62.
[61] Weidner, N., et al. "Tumor angiogenesis and metastasis--correlation in invasive breast carcinoma." N. Engl. J. Med. 324.1 (1991): 1-8.
[62] Hashizume, H., et al. "Openings between defective endothelial cells explain tumor vessel leakiness." Am. J. Pathol. 156.4 (2000): 1363-80.
[63] Yurchenco, P. D. and J. C. Schittny. "Molecular architecture of basement membranes." FASEB J. 4.6 (1990): 1577-90.
[64] Chen, C. S., et al. "Geometric control of cell life and death." Science 276.5317 (1997): 1425-28.
[65] Kornblihtt, A. R., et al. "Primary structure of human fibronectin: differential splicing may generate at least 10 polypeptides from a single gene." EMBO J. 4.7 (1985): 1755-59.
[66] Suzuki, S., et al. "Complete amino acid sequence of human vitronectin deduced from cDNA. Similarity of cell attachment sites in vitronectin and fibronectin." EMBO J. 4.10 (1985): 2519-24.
[67] Sasaki, M., et al. "Sequence of the cDNA encoding the laminin B1 chain reveals a multidomain protein containing cysteine-rich repeats. " Proc. Natl. Acad. Sci. U.S.A 84.4 (1987): 935-39.
[68] Sasaki, M. and Y. Yamada. "The laminin B2 chain has a multidomain structure homologous to the B1 chain." J. Biol. Chem. 262.35 (1987): 17111-17.
[69] Ruoslahti, E. and M. D. Pierschbacher. "New perspectives in cell adhesion: RGD and integrins." Science 238.4826 (1987): 491-97.
[70] Takeichi, M. "Cadherin cell adhesion receptors as a morphogenetic regulator." Science 251.5000 (1991): 1451-55.
[71] Springer, T. A. "Adhesion receptors of the immune system." Nature 346.6283 (1990): 425-34.
[72] Hynes, R. O. "Integrins: a family of cell surface receptors." Cell 48.4 (1987): 549-54.
[73] Springer, T. A. and L. A. Lasky. "Cell adhesion. Sticky sugars for selectins." Nature 349.6306 (1991): 196-97.
[74] Dubey, P. K., et al. "Liposomes modified with cyclic RGD peptide for tumor targeting." J. Drug Target 12.5 (2004): 257-64.
[75] Gupta, A. S., et al. "RGD-modified liposomes targeted to activated platelets as a potential vascular drug delivery system." Thromb. Haemost. 93.1 (2005): 106-14.
[76] Hynes, R. O. "Integrins: bidirectional, allosteric signaling machines." Cell 110.6 (2002): 673-87.
[77] Humphries, M. J. "Integrin structure." Biochem. Soc. Trans. 28.4 (2000): 311-39.
[78] Brooks, P. C. "Role of integrins in angiogenesis." Eur. J. Cancer 32A.14 (1996): 2423-29.
[79] Stromblad, S., et al. "Suppression of p53 activity and p21WAF1/CIP1 expression by vascular cell integrin alphaVbeta3 during angiogenesis." J. Clin. Invest 98.2 (1996): 426-33.
[80] Pattillo, C.B., et al. "Targeting of the antivascular drug combretastatin to irradiated tumors results in tumor growth delay. " Pharm Res. 22.7(2005): 1117-20.
[81] 國家中醫藥管理局 <中華本草> 編委會著,中華本草( 7 ),上海科學技術出版社,169~186 頁。
[82] 劉接寶和洪禎徽主編,臨床實驗用彩色中藥大典,立德出版社,73 年六月初版。
[83] Wang N, et al. "A new platelate aggregation inhibitor from Salvia miltiorrhiza." Planta Med. 55.4(1989): 390-91.
[84] Lee,C.M., et al. "Miltirone, a central benzodiazepine receptor partial agonist from a Chinese medicinal herb Salvia miltiorrhiza." Neurosci. Lett. 127.2(1991): 237-41.
[85] Liu,J., et al. "Effect of Salvia miltiorrhiza on aflatoxin B1-induced oxidative stress in cultured rat hepatocytes." Free Radic. Res. 31.6(1999): 559-68.
[86] Nan,J.X. et al. "Anti-fibrotic effects of a hot-water extract from Salvia miltiorrhiza roots on liver fibrosis induced by biliary obstruction in rats." J. Pharm. Pharmacol. 53.2(2001): 197-204.
[87] Lee,D.S., et al. "Antibacterial activities of cryptotanshinone and dihydrotanshinone I from a medicinal herb, Salvia miltiorrhiza Bunge." Biosci. Biotechnol. Biochem., 63.12(1997): 2236-39.
[88] Lee,D.S., et al. "Biological activity of dihydrotanshinone I: effect on apoptosis." J. Biosci. Bioeng. 89.3(2000): 292-293.
[89] Hao,Y.L., et al. "In-vitro cytotoxicity, in-vivo biodistribution and anti-tumour effect of PEGylated liposomal topotecan." J. Pharm. Pharmacol. 57.10(2005): 1279-87.
[90] Campbell,P.I. "Toxicity of some charged lipids used in liposome preparations." Cytobios 37.145(1983): 21-26.
[91] Schiffelers,R.M. "Anti-tumor efficacy of tumor vasculature-targeted liposomal doxorubicin." J. Control Release 91.1-2(2003): 115-22.
[92] Xiong,X.B., et al. "Enhanced intracellular delivery and improved antitumor efficacy of doxorubicin by sterically stabilized liposomes modified with a synthetic RGD mimetic." J. Control Release 107.2(2005): 262-75.
[93] Szepeshazi,K. "Preclinical evaluation of therapeutic effects of targeted cytotoxic analogs of somatostatin and bombesin on human gastric carcinomas." Cancer 98.7(2003): 1401-10.
[94] Syrigos,K.N., et al. "Biodistribution and pharmacokinetics of 111In-dTPA-labelled pegylated liposomes after intraperitoneal injection." Acta Oncol. 42.2(2003): 147-53.
[95] Liu,S. "Radiolabeled multimeric cyclic RGD peptides as integrin alpha v beta 3 targeted radiotracers for tumor imaging." Mol. Pharm. 3.5(2006): 272-87.
[96] Sapra P. et al. "Ligand-targeted liposomes for cancer treatment." Curr. Drug Deliv. 2.4(2005): 369-81.
[97] Park,J.W. "Liposome-based drug delivery in breast cancer treatment." Breast Cancer Res. 4.3(2002): 95-99.
[98] Lee,R.J. et al. "Delivery of liposomes into cultured KB cells via folate receptor-mediated endocytosis." J. Biol. Chem. 269.5(1994): 3198-3204.
[99] Holig,P. et al. "Novel RGD lipopeptides for the targeting of liposomes to integrin-expressing endothelial and melanoma cells." Protein Eng Des Sel. 17.5(2004): 433-41.
[100] Goren,D. et al. "Nuclear delivery of doxorubicin via folate-targeted liposomes with bypass of multidrug-resistance efflux pump." Clin. Cancer Res. 6.5(2000): 1949-57.
[101] Chung,T.W. et al. "Enhancing growth human endothelial cells on Arg-Gly-Asp (RGD) embedded poly (epsilon-caprolactone) (PCL) surface with nanometer scale of surface disturbance." J. Biomed. Mater. Res. A 72.2(2005): 213-19.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top