跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.82) 您好!臺灣時間:2026/02/20 08:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王冠文
研究生(外文):WANG,GAUN-WEN
論文名稱:微波輻射及鹼源對化學浴合成氧化鋅/二氧化鈦一維結構應用於染料敏化太陽能電池的效應
論文名稱(外文):Influence of Microwave Irradiation and Alkaline Sources on Chemical Bath Depositon of ZnO/TiO2 One Dimensional Structure for Dye-sensitized Solar Cells
指導教授:陳龍泉陳龍泉引用關係
指導教授(外文):CHEN,LUNG-CHUAN
口試委員:黃昭銘陳建宏李玉郎
口試委員(外文):HUANG,CHAR-MINGCHEN,JEAN-HONGLEE,YUH-LANG
口試日期:2013-07-16
學位類別:碩士
校院名稱:崑山科技大學
系所名稱:材料工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:117
中文關鍵詞:染料敏化太陽能電池氧化鋅二氧化鈦奈米柱
外文關鍵詞:DSSCZnOTiO2nanotube
相關次數:
  • 被引用被引用:2
  • 點閱點閱:783
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
本文利用六亞甲基四胺、尿素、氫氧化鈉及氨水為鹼源,在一般水熱及微波水熱中於FTO玻璃成長氧化鋅柱,探討氧化鋅柱的相關性質及應用於染料敏化太陽能電池的光伏特性研究。接下來再以氧化鋅柱為模板,合成二氧化鈦一維結構,討論不同鹼源及微波加熱方式對二氧化鈦性質及於染料敏化太陽能電池的光伏特性。
在沒有微波輔助加熱水浴合成氧化鋅柱實驗中顯示,利用HMT合成的鹼源具有最長的氧化鋅柱、最大的柱徑及最小光反射率,而氫氧化鈉合成的氧化鋅柱有最小的PL發光強度及光線穿透率。四種鹼源均能合成一維的氧化鋅柱且呈現wurtzite的六方晶結構,表現強的(002)面結晶性。不同鹼源造成氧化鋅柱長度不一主要是由於鹼與鋅離子的反應機制及反應物濃度的不一所致。光電轉換效率與鹼源之關係為氫氧化鈉 > HMT > 尿素> 氨水。尿素及氨水系統由於氧化鋅的柱短,因此效率相當低。電化學阻抗分析顯示,光陽極與電解液之間的電荷轉移阻力與鹼源的關係為氫氧化鈉 < HMT < 氨水~尿素,而電子再結合時間的關係為氫氧化鈉 > 氨水 > HMT > 尿素。
利用沒有微波輔助水浴合成之氧化鋅柱為模板製備二氧化鈦的實驗中,觀察到光伏效率的大小關係為氫氧化鈉 > HMT > 氨水 > 尿素。在HMT、氫氧化鈉、及氨水方法中均可觀察的二氧化鈦的結晶繞射峰,但尿素中並沒有。二氧化鈦柱的長度關係為氫氧化鈉 > HMT > 氨水 > 尿素,此結果與光伏效率的大小一致,亦反映出強的PL發光會導致較低的效率。電荷轉移阻力與鹼源關係為氫氧化鈉 < HMT < 尿素 < 氨水。
在微波輔助水浴合成氧化鋅柱實驗中顯示,微波時間從1小時增加至5小時光電轉換效率隨之增長,且氫氧化鈉的效率大於HMT。利用氫氧化鈉合成的氧化鋅柱比起HMT者有較長的長度,以及較小的柱徑。利用HMT製備的氧化鋅柱隨反應時間增加有較大的PL發光,但是由氫氧化鈉合成者之PL在5小時時最小。隨微波反應時間增加,電荷轉移阻力下降,其中氫氧化鈉系統的阻力又小於HMT者。實驗結果顯示微波可以促進氧化鋅柱的生成,但另一方面,其也促進氧化鋅的解離。
利用微波輔助合成氧化鋅柱作為模板,再製備二氧化鈦的實驗顯示,較長反應時間製備的氧化鋅柱,能合成較長的二氧化鈦一維結構,且光電轉換效率亦因而提升。在HMT系統中,二氧化鈦的柱徑隨氧化鋅柱模板的生成時間增加而先變小再變大,反應出氧化鋅柱模板的特性。沒有微波合成的氧化鋅柱,於製備二氧化鈦程序中加入微波,因為氧化鋅柱的迅速分解,二氧化鈦無法形成一維的結構,而以顆粒狀沉積於基板上。

In this study, hexamethylenetetramine (HMT), urea, sodium hydroxide (NaOH), and ammonium water were used as basic sources to prepare the one dimensional zinc oxide rods (ZORs) on F-doped tin oxide (FTO) glass from a chemical bath deposition method in the presence and absence of microwave irradiation. The prepared ZORs were then acted as templates for the synthesis of one dimensional TiO2 rods (TORs). The properties of the prepared ZORs and TORs were examined to correlate to their photovoltaic performances in dye sensitized solar cells (DSSCs) based on the photoanodes of ZORs or TORs preadsorbed with N719 dyes.
All the four bases produced ZORs with wurtzite structure of hexagonal faces along the (002) crystal plane. The base of HMT can yield ZORs with longer length, larger radius, and smaller reflectivity than those of NaOH, urea, and ammonium water. The differences in reaction mechanism of the base and zinc ions, and the difference in the concentrations of the reactants were suggested as the main reasons for the deviation in morphology and structure of the prepared ZORs with various bases.
For the ZORs prepared without microwave, the power conversion efficiency (PCE) of DSSCs decreased in order of NaOH > HMT >urea > ammonium water. ZORs from urea and ammonium water exhibited shorter length compared with those of NaOH and HMT, and revealed decreased PCE. Electrochemical impedance spectra (EIS) demonstrated the charge transfer resistance between ZORs/dyes and electrolytes increased in order of NaOH < HMT < ammonium water ~ urea, and the recombination time of electrons decreased in order of NaOH > ammonium water > HMT > urea.
TORs synthesized through ZORs in the absence of microwave irradiation indicated the PCE of DSSCs followed the descending order of NaOH > HMT > ammonium water > urea. TiO2 obtained from bases of HMT, NaOH, and ammonium water exhibited diffracted peaks ascribed to anatase TiO2, which was absent when urea was adopted. The length of TORs with bases followed the relationship of NaOH > HMT > ammonium water > urea, which was consistent with the PCE of DSSCs and the inverse order of PL intensity. The charge transfer resistance between ZORs/dyes and electrolytes followed the ascending order of NaOH < HMT < urea < ammonium water.
Increasing the time of microwaved-irradiated growing of ZORs from 1 to 5 h increased their PCEs of DSSCs. The ZORs with the base of NaOH showed higher PCE than that of HMT because the length and radius of the former were longer and smaller, respectively. Increasing the time of growing ZORs increased their PL intensity with the base of HMT, however, the PL intensity decreased as the time increased from 1 to 5 h in the case of NaOH. Increasing the time of growing ZORs with microwave irradiation decreased their charge transfer resistance between ZORs/dyes and electrolytes. Furthermore, NaOH demonstrated a lower charge transfer resistance than that of HMT. Results also reflected that microwave irradiation can simultaneously promote formation of ZORs and destruction of ZnO bonds.
Fabrication of TORs using microwave-irradiated formed ZORs as temples indicated that the longer of the ZORs leaded to the longer of the TORs and the higher of the PCE. Introducing microwave irradiation to the fabrication of TORs caused the rapid destruction of the temples of ZORs, and TiO2 crystals occurred as particles morphology rather than one dimensional structure.

摘要 I
Abstract II
致謝 IV
目 錄 V
表目錄 VII
圖目錄 VIII
第一章 緒論 1
1.1前言 1
1.2 太陽能光電發展與現況 2
1.3研究動機 5
第二章 實驗原理與文獻回顧 8
2.1染料敏化太陽能電池工作原理 8
2.2 氧化物半導體光電極 10
2.3 光敏化劑 13
2.4 氧化還原電解質 15
2.5 相對電極 16
2.6 一維奈米結構光電極開發 16
2.7 以化學浴沉積法成長氧化鋅一維結構 18
第三章 實驗步驟與研究方法 21
3.1 實驗藥品與儀器 21
3.2 實驗步驟 27
第四章 結果與討論 34
4.1 不同鹼源對氧化鋅奈米柱性質及光電轉換效率的影響 34
4.2 不同鹼源對氧化鋅奈米柱合成二氧化鈦性質及光電轉換效率的影響 48
4.3微波輻射化學浴在六亞甲基四胺及氫氧化鈉中合成氧化鋅柱性質及光電轉換效率的影響 59
4.4微波輻射化學浴合成氧化鋅柱模板製備二氧化鈦一維結構性質及光電轉換效率的影響 77
4.5化學浴合成氧化鋅柱模板再以微波輻射製備二氧化鈦 87
4.6鍍鈦時間對於製備蝕刻二氧化鈦一維結構的效應 94
第五章 結論 107
第六章 參考文獻 109

[1] 行政院國家科技委員會 科技大觀園 http://www.nsc.gov.tw/scitechvista/zh-tw/Feature/C/0/3/10/1/245.htm
[2] BP Statistical Review of World Energy June 2012.
[3] 國家實驗研究院 http://www.narlabs.org.tw/tw/pressroom/topic/topic.php?group_id=28&topic_id=37
[4]「因應全球競爭環境下提升我國太陽光電產業優勢策略之研究」行政院經濟建設委員會 中華民國101年5月。
[5]經濟部太陽能推廣網站 http://www.solargold.tw/principle.aspx
[6]吳志明, “Nanotechnology in energy applications”。
[7] B. O’Regan, M. Gratzel, Nature. 353 (1991) 737.
[8] TECHNOLOGY, http://www.mansolar.com/function.htm
[9] M. Law, L. E. Greene, J. C. Johnson et al., Nat Mater. 4 (2005) 455.
[10] K. Lee, D. Kim, P. Schmuki, Chem. Commun. 47 (2011) 5789-5791.
[11] X. Feng, K. Shankar, O.K. Varghese, M. Paulose, T. J. Latempa, C.A. Grimes, Nano Lett. 8 (2008) 3781.
[12] R. H. Tao, J. M. Wu, H. X. Xue, X. M. Song, X. Pan, X. Q. Fang, X.D. Fang, S. Y. Dai, Journal of Power Sources 195 (2010) 2989.
[13] Y. Liu, M. Li, H. Wang, J. Zheng, H. Xu,Q. Ye and H. Shen, J. Phys. D Appl. Phys. 43 (2010) 205103.
[14] L. L. Li, C. Y. Tsai, H. P. Wu, C. C. Chen and E. W. G. Diau, J. Mater. Chem. 20 (2010) 753.
[15] K. Shankar, J.I. Basham, N. K. Allam, O. K. Varghese, G. K. Mor, X. Feng, M. Paulose, J. A. Seabold, K. S. Choi, C. A. Grimes, J. Phys. Chem. C 113 (2009) 6327.
[16] J. R. Jennings, A. Ghicov, L. M. Peter, P. Schmuki, A. B. Walker, J. Am. Chem. Soc. 130 (2008) 3364.
[17] K. Shankar, G. K. Mor, H. E. Prakasam, S Yoriya, M. Paulose, O. K. Varghese, C. A. Grimes, Nanotechnology. 18 (2007) 065707.
[18] L. Y. Chen, Y. T. Yin, RSC Adv. 3 (2013) 8480–8488.
[19] Y. Wang, Y. Sun, K. Li, Materials Lett. 63 (2009) 1102.
[20] T. P. Chou, Q. F. Zhang, G. E. Fryxell, G. Z. Cao, Adv. Mater. 19 (2007) 2588.
[21] J. Chung, J. Lee, S. Lim, Phys. B, 405 (2010) 2593.
[22] L. Dloczik, O. Ileperuma, I. Lauermann, L.M. Peter, E. A. Ponomarev, G. Redmond, N. J. Shaw, I. Uhlendorf, J. Phys. Chem. B, 101 (1997) 10281.
[23] N. Kopidakis, K. D. Benkstein, J. V. d. Lagemaat, A. J. Frank, Phys. Rev. B, 73 (2006) 045326.
[24] M. Quintana, T. Edvinsson, A. Hagfeldt, G. Boschloo, J. Phys. Chem. C, 111 (2007) 1035.
[25] J. B. Baxter and C. A. Schmuttenmaer, J. Phys. Chem. B, 110 (2006) 25229.
[26] Z. Y. Zhang, C. H. Jin, X. L. Liang et al., Appl. Phys. Lett. 88 (2006) 3.
[27] E. M. Kaidashev, M. Lorenz, H. Wenckstern, A. Rahm, H. C. Semmelhack, K. H. Han, G. Benndorf, C. Bundesmann, H. Hochmuth, M. Grundmann, Appl. Phys. Lett. 82 (2003) 3901.
[28] M. F. Hossain , T. Takahashi , S. Biswas , Electrochemistry Communications 11 (2009) 1756.
[29] T. Dittrich, E. A. Lebedev, and J. Weidmann, Phys. Status Solidi A-Appl. Res. 167 (1998) R9.
[30] T. Dittrich, Phys. Status Solidi A-Appl. Res. 182 (2000) 447.
[31] P. Charoensirithavorn, Y. Ogomi, T. Sagawa, S. Hayase, S. Yoshikawa, Journal of Crystal Growth 311 (2009) 757.
[32] R. H. Tao, J. M. Wu, H. X. Xue, X. M. Song, X. Pan, X. Q. Fang, X.D. Fang,
S. Y. Dai, Journal of Power Sources 195 (2010) 2989.
[33] Y. Xiao, J. Wu, G. Yue, G. Xie, J. Lin, M. Huang. Electrochimica Acta 55 (2010) 4573.
[34] D. J. Yang, H. Park, S. J. Cho, H. G. Kim, W. Y. Choi, Journal of Physics and Chemistry of Solids 69 (2008) 1272.
[35] P. Roy, D. Kim, I. Paramasivam, P. Schmuki, Electrochemistry Communications 11 (2009) 1001.
[36] J. Jung, J. Myoung, S. Lim, Thin Solid Films 520 (2012) 5779-5789.
[37] X. Gan, X. Li, X. Gao, F. Zhuge, W. Yu, Thin Solid Films, 518 (2010) 4809-4812.
[38] A. Hagfeldt, M. Grätzel, Chem. Rev. 95 (1995) 49.
[39] G. Hodes, J. Phys. Chem. C 112 (2008) 17778.
[40] S. A. Haque, E. Palomares, B. M. Cho, A. N. M. Green, N. Hirata, D. R. Klug, J. R. Durrant, J. Am. Chem. Soc. 127 (2005) 3456.
[41] S. A. Haque, Y. Tachibana, R. L. Willis, J. E. Moser, M . Gratzel, D. R. Klug, J. R. Durrant, J. Phys. Chem. B 104 (2000) 538.
[42] P. J. Cameron, L. M. Peter, S Hore, J. Phys. Chem. B 109 (2005) 930.
[43] J. Bisquert, D. Cahen, G. Hodes, S. Rühle, and A. Zaban, J. Phys. Chem. B 108 (2004) 8106.
[44] 國家奈米元件實驗室 奈米通訊 07 (2007) 十四卷 NO.2。
[45] D. Dvoranová, V. Brezová, M. Mazúr, M. A. Malati, Appl. Catal. B Environ. 37 (2002) 91.
[46] C. Boyle, T. J. Bunge, S. D. Andrews, N. L. Matzen, L. E. Sieg, K. Rodriguez, and M. A. Headley, Chemical Materials. 16 (2004) 3279-3288
[47] M. Grätzel, Nature 414 (2001) 338.
[48] K. S. Ahn, S. Shet, T. Deutsch, C. S. Jiang, Y. Yan, M. A. Jassim, J. Turner, Journal of Power Sources 176 (2008) 387.
[49] B. D. Yao, Y. F. Chan, and N. Wang, Appl. Phys. Lett. 81 (2002) 757.
[50] A. Wei, X. W. Sun, C. X. Xu, Z. L. Dong, Y. Yang, S. T. Tan, and W Huang, Nanotechnology, 2006, 17, 1740.
[51] H. Horiuchi, R. Katoh, K. Hara, M. Yanagida, S. Murata, H. Arakawa, M. Tachiya, J. Phys. Chem. B, 107 (2003) 2570.
[52] V. Ramamurthy and K. S. Schanze, Marcel Dekker, Inc. (2003).
[53] 劉茂煌, ”奈米光電池”, 工業材料203 (2003) 91。
[54] 黃建昇, 工業材料雜誌2003, 203 期, 150。
[55] A. Yella, H. W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, Md. K. Nazeeruddin, E. W. G. Diau, C. Y. Yeh, S. M. Zakeeruddin, M. Gratzel, SCIENCE, 4 (2011)11 334.
[56] C. Y. Chen, S. J. Wu, C. G. Wu, J. G. Chen, K. C. Ho, Angew, Chem, Int. Ed, 45, 5822 (2006).
[57] C. Y. Hsu, K. M. Lee, J. H. Huang, K. R. Justin Thomas, J. T. Lin, K. C. Ho, JOURNAL OF POWER SOURCES, 185, 1505 (2008).
[58] Y. S. Yen, Y. C. Hsu, J. T. Lin, C. W. Chang, C. P. Hsu, and Yin D. J. Yin, J. J. Phys. Chem. C, 2008, 112 (32), 12557–12567.
[59] K. R. Justin Thomas, Y. C. Hsu, J. T. Lin, K. M. Lee, K. C. Ho, C. H. Lai, Y. M. Cheng, and P.-T. Chou, Chem. Mater, 20, 1830(2008).
[60] S. Ito, S. M. Zakeeruddin, R. Humphry-Baker, P. Liska, R. Charvet, P. Comte, M. K. Nazeeruddin, P. Péchy, M. Takata, H. Miura, S. Uchida, and M. Grätzel, Adv. Mater, 18, 1202,(2006).
[61] H. Choi, C. Baik, S. O. Kang, J. Ko, M.-S. Kang, Md. K. Nazeeruddin, and M. Grätzel, Angew. Chem., Int. Ed,47,327(2008).
[62] N. Robertson, Angew, Chem., Int. Ed., 47, 1012,(2008).
[63] M. Grätzel, Journal of Photochemistry and Photobiology A: Chemistry 164 (2004) 3.
[64] F. T. Kong, S. Y. Dai, K. J. Wang, Advances in OptoElectronics Volume 2007, Article ID 75384 (2007) 13.
[65] M. K. Nazeeruddin, P. Péchy, T. Renouard, S.M. Zakeeruddin, R. H. Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi, M. Grätzel, J. Am. Chem. Soc. 123 (8) (2001) 1613.
[66] H. Kusama, H. Arakawa, J. Photochem. Photobiol. A: Chem. 160 (2003) 171.
[67] H. Kusama, H. Arakawa, J. Photochem. Photobiol. A: Chem. 162 (2004) 441.
[68] H. Nusbaumer, S. M. Zakeeruddin, J. E. Moser, M. Gratzel, Chem. Eur. J. 9, (2003) 3756.
[69] Z. Li, B. Ye, X. Hu, X. Ma, X. Zhang, Y. Deng, Electrochemistry Communications.11 (2009) 1768-1771.
[70] C. Y. Lin, J. Y. Lin, J. L. Lan, T. C. Wei, C. C. Wan, Electrochem. Solid-State Lett. 13 (2010) 11 D77-D79.
[71] K. Zhu, N. R. Neale, A. Miedaner, A. J. Frank, Nano Lett. 7 (2007) 69.
[72] G. K. Mor, K. Shankar, O. K. Varghese, G. K. Varghese, C. A. Grimes, Nano Lett. 6 (2006) 215.
[73] M. Paulose, K. Shankar, O.K. Varghses, G.K. Mor, B. Hardin, C.A. Grimes, Nanotechnology,17(2006)1446.
[74] J. Lin, J. Chen, X. Chen, Nanoscale Research Letters, 6 (2011) 475.
[75] C. Pacholski, A. Kornowski, and H. Weller, Angew. Chem., Int. Ed. 41, 1188 (2002).
[76] C. H. Ku, J. J. Wu, Nanotechnology, 18 (2007) 505706.
[77] C. K. Ku, H. H. Yang, G. R. Chen, J. J. Wu, Crystal Growth Design 8 (2008) 283.
[78] A. Umar, A. A. Hajry, Y. B. Hahn, D. H. Kim, Electrochimica Acta 54 (2009) 5358.
[79] Y. Jiang , M. Wu, X. Wu, Y. Sun , H. Yin , Materials Letters 63 (2009) 275.
[80] Z. H. Chen, Y. B. Tang, C. P. Liu, Y. H. Leung, G. D. Yuan, L. M. Chen, Y. Q. Wang, I. Bello, J. A. Zapien, W. J. Zhang, C. S. Lee, and S. T. Lee, J. Phys. Chem. C 113 (2009) 13433.
[81] Y. Haidong, Z. Zhongping, H. Mingyong, H. Xiaotao, Z. Furong, J. Am. Chem. Soc. 127 (2005) 2378.
[82] P. Hoyer, Langmuir 12, 1411, (1996) 32.
[83] A. Michailowski, D. AlMawlawi, G. Cheng, M. Moskovits, Chem. Phys. Lett. 349 (2001) 1.
[84] P. Charoensirithavorn, Y. Ogomi, T. Sagawa, S. Hayase, and S. Yoshikawa, Journal of The Electrochemical Society, 157 (2010) B354.
[85] C. Xu, P. H. Shin, L. Cao, J. Wu, and D. Gao, Chem. Mater. 22 (2010) 143.
[86] L. Vayssieres, K. Keis, S. E. Lindquist, and A. Hagfeldt, J. Phy. Chem. B 105, 3350 (2001).
[87] Y. Jiang , M. Wu, X. Wu, Y. Sun , H. Yin , Materials Letters 63 (2009) 275.
[88] 賴致遠, 化學浴沉積法合成氧化鋅奈米線及其特性分析, 碩士論文, 國立成功大學, 2006。
[89] F. Xu, L. Sun, Energy Environ. Sci., 4 (2011) 818.
[90] 黃明義、黃哲勳、李虹儀, “激發光光譜分析(含PL與CL)”, 台灣大學化學系
[91] 曹楚南、周巧龍,電化學阻抗譜導論(ISBN書號7030098544),科學出版社。
[92] K. Park , J. Xi , Q. Zhang , G. Cao, J. of Phys. Chem. C 2011, 115, 20992-20999.
[93] T. Hoshikawa, R. Kikuchi, K. Eguchi, J. Electroanal. Chem. 2006, 588, 59-67.
[94] Q. Wang , J.-E. Moser , M. Grätzel, J. Phys. Chem. B. 2005, 109, 14945-14953.
[95] M. Adachi, M. Sakamoto J. Jiu, Y. Ogata, S. Isoda, J. Phys. Chem. B. 2006, 110, 13872-13880.
[96] K. Park , Q. Zhang , D. Myers, G. Cao,ACS Applied Materials & Interfaces 2013, 5, 1044-1052.
[97] Q. Wang, S. Ito, M. Grätzel , F. Fabregat-Santiago, I. Mora-Seró, J. Bisquert, T. Bessho, Hachiro Imai, J Phys. Chem. B 2006, 110, 25210.
[98] 蔡水蜂, ZnO/TiO2 奈米管陣列製備及在染料敏化太陽之應用, 碩士論文, 崑山科技大學, 2010。
[99] J. H. Lee, I.C. Leu, M.C. Hsu, Y.W. Chung, M.H. Hon, Phys. Chem. B 2005, 109, 13056 .
[100] P. Charoensirithavorn, Y. Ogomi,T. Sagawa, S. Hayase, S. Yoshikawa, J. Electrochem. Soc. 2010 , 157, 3, B354-B356 .
[101] L.E. Greene, B. D. Yuhas, M. Law, D. Zitoun, P. Yang, Inorg. Chem., 2006, 45 (19), 7535–7543.
[102] M. Zhou, J. Yu, S. Liu, P. Zhai, L. Jiang, J. Hazard. Mater. 154 (2008) 1141.
[103] L. Jing, Y. Qu, B. Wang, S. Li, B. Jiang, L. Yang, W. Fu, H. Fu, J. Sun, Solar Energy Mater. Solar Cells 90 (2006) 1773.
[104] J. G. Yu, H. G. Yu, B. Cheng, X. J. Zhao, J. C. Yu, W. K. Ho, J. Phys. Chem. B 107 (2003) 13871.
[105]L.-Y. Lin, M.-H. Yeh, C.-P. Lee, C.-Y. Chou, R. Vittal, K.-C. Ho, Electrochimica Acta 62 (2012) 341-347.
[106] M. Adachi, M. Sakamoto, J. Jiu, Y. Ogata, S. Isoda, J. Phys. Chem. B. 110 (2006) 13872-13880.
[107] S. Phadke, A. D. Pasquier, D. P. Birnie, J. Phys. Chem. C. 115 (2011) 18342-18347.
[108] A. Zaban, M. Greenshtein, J. Bisquert, J. Phys. Chem. C. 4 (2003) 859.
[109] J. Bisquert, A. Zaban, M. Greenshtein, J. Mora-Sero, J. Am. Chem. Soc. 126 (2004) 13550.
[110] L. Lu, R. Li, K. Fan, T. Peng, Solar Energy. 84 (2010) 844-853.
[111] D.Zhao, T. Peng, L. Lu, P. Cai, P. Jiang, Z. Bian, J. Phys. Chem. C. 112 (2008) 8486-8494.
[112] J. Bisquert, A. Zaban, M. Greenshtein, L. Mora-Sero, J. Am. Chem. Soc. 126 (2004) 13550-1559.
[113] A. Zaban, M. Greenshtein, J. Bisquert, Chem. Phys. Chem. 4 (2003) 859-864.
[114] F. Gao, Y. Wang, D. Shi, J. Zhang, M. Wang, X. Jing, R. H. Baker, P. Wang, S. M. Zakeeruddin, M. Gratzel, J. Am. Chem. Soc. 130 (2008)
[115] Q. Zhang, C.S. Dandeneau, X. Zhou, G. Cao, Adv. Mater. 21 (2009) 4087-4108. [116] H. Horiuchi, R. Katoh, K. Hara, M. Yanagida, S. Murata, H. Arakawa, M. Tachiya, J. Phys. Chem. B 107 (2003) 2570.
[117] N.A. Anderson, T. Lian, Coord. Chem. Rev. 248 (2004) 1231.
[118] J. Chung, J. Lee, S. Lim, Phys. B, 405 (2010) 2593.
[119] L. Dloczik, O. Ileperuma, I. Lauermann, L.M. Peter, E. A. Ponomarev, G. Redmond, N. J. Shaw, I. Uhlendorf, J. Phys. Chem. B, 101 (1997) 10281.
[120] N. Kopidakis, K. D. Benkstein, J. V. d. Lagemaat, A. J. Frank, Phys. Rev. B, 73 (2006) 045326.
[121] M. Quintana, T. Edvinsson, A. Hagfeldt, G. Boschloo, J. Phys. Chem. C, 111 (2007) 1035.
[122] E.M. Kaidashev, M. Lorenz, H. Von Wenckstern, A. Rahm, H.C. Semmelhack, K.H. Han, G. Benndorf, C. Bundesmann, H. Hochmuth, M. Grundmann, Applied Physics Letters 82 (2003) 3901.
[123] M. Law, L.E. Greene, J.C. Johnson, R. Saykally, P. Yang, Nature Materials 4 (2005) 455.
[124] P.S. Archana, R. Jose, C. Vijila, S. Ramakrishna, Journal of Physical Chemistry C 113 (2009) 21538.
[125] D. Hwang, D. Y. Kim, S. Y. Jang, D. Kim, J. Mater. Chem. A, 2013, 1, 1228-1238.
[126] D. Hwang, H. Lee, Y. Seo, D. Kim, S. M. Jo, D. Y. Kim, J .Mater Chem. A, 2013, 1, 1359-1367.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top