跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/07 23:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳榮進
研究生(外文):Jung-Chin Chen
論文名稱:CSO演算法應用在負載管理及經濟調度最佳化
論文名稱(外文):CSO Algorithm Applications in Optimal Load Management and Economic Dispatch
指導教授:黃鐘慶黃鐘慶引用關係
指導教授(外文):Jong-Ching Hwang
學位類別:博士
校院名稱:國立高雄應用科技大學
系所名稱:電機工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:91
中文關鍵詞:最佳化演算法經濟調度負載管理決策者需求面演算法非線性電費
外文關鍵詞:Cat Swarm Optimization, CSO, PSOLoad ManagementEconomic DispatchAND
相關次數:
  • 被引用被引用:0
  • 點閱點閱:1357
  • 評分評分:
  • 下載下載:140
  • 收藏至我的研究室書目清單書目收藏:0
本論文之目的是應用猫群最佳化(Cat Swarm Optimization, CSO)演算法去研究台灣產業的負載管理(Load Management)及經濟調度(Economic Dispatch)最佳化問題,希望經由CSO演算法來建立最佳需量,進而為至台灣工業降低電費成本。
本研究結果顯示CSO比PSO是較快速收斂且有較佳的整體解,而且CSO演算法對於台灣產業界在負載管理最佳化是有助益的。
從需求面的觀點本研究應用SCADA監控系統和實用的負載管理項目幫助台灣工業節省電費成本,且本研究亦致力提供有用的負載管理策略供決策者參考。
最後,我們建議未來的研究可以應用CSO演算法去分析解決工程及電力系統之非線性最佳化的問題。
The aim of this research is to study the load management (LM) and economic dispatch decision for the Taiwanese industries through Cat Swarm Optimization (CSO) algorithm. CSO algorithm can be proposed to select optimal demand contract and drop the basic electricity cost.
Results indicated that the CSO is superior to Particle Swarm Optimization (PSO) in the fast convergence and better performance to find the global best solution, considering the same iteration time. Also the CSO algorithm is highly helpful to Taiwanese industries on the optimal LM decision.
From the view point of demand side management, this research is to apply SCADA system and a feasible LM options for the Taiwanese industries to reduce the power cost. Also this study refers to provide decision-makers with useful LM strategies as reference.
Finally, it is suggested that future research might explore in nonlinear optimization problem through CSO algorithm, as well as in engineering and power system.
CONTENTS
ABSTRACT iii
CONTENTS v
LIST OF TABLES vii
LIST OF FIGURES viii

CHAPTER
I INTRODUCTION 1
1.1 Motivation and Objective 1
1.2 Literature Review……………………………………………………………. 4
1.3 Outline………………………………………………………………………. 9
II THE PROBLEM AND OBJECTIVE FUNCTION 10
2.1 Introduction 10
2.2 The Objective Function of Optimal Demand (TOU Rate) 11
2.3 The Objective Function of Optimal Demand (Non-TOU Rate) 14
2.4 The Objective Function of Economic Dispatch 16
III RESEARCH METHOD 20
3.1 The CSO Algorithm 20
3.1.1 The Seeking Mode 20
3.1.2 The Tracing Mode 22
3.1.3 The Core Description of Cat Swarm Optimization 22
3.2 The PSO Algorithm 25
3.2.1 The Seeking Mode 26
3.2.2 The Core Description of Particle Swarm Optimization 28

IV PREVENIENT SIMULATION RESULTS 30
4.1 The Optimal Contract Capacity for TOU Rate Customer 30
4.1.1 Parameter Settings for CSO and PSO (TOU) 31
4.1.2 Experimental Results for CSO and PSO (TOU) 31
4.1.3 The Implementation of Optimal Demand Contract (TOU) 34
4.2 The Optimal Contract Capacity for Non-TOU Rate Customer 35
4.2.1 Parameter Settings for CSO and PSO (Non-TOU) 36
4.2.2 Experimental Results for CSO and PSO (Non-TOU) 36
4.2.3 The Implementation of Optimal Demand Contract (Non-TOU) 37
4.3 The Economic Dispatch (ED) 40
4.3.1 Parameter Settings for CSO and PSO (ED) 40
4.3.2 Experimental Results for CSO and PSO (ED) 42
4.3.3 The Implementation of Optimal Demand Contract (ED) 42
V AUTOMATIC LOAD MANAGEMENT: A CASE STUDY 46
5.1 A SCADA Management Framework 46
5.1.1 The SCADA Automatic Management System 47
5.1.2 The Function of MAC 49
5.1.3 The On-line Battery Monitoring System 50
5.1.4 The Dialup Modem Application in BS Transmission Network 51
5.1.5 The GPRS Application in BS Transmission Network 52
5.1.6 The Mix Type Transmission Network 53
5.1.7 The Analysis of Management and Maintenance Network 55
5.2 The Research Method 56
5.3 The Power Energy Management Strategies 58
5.3.1 The Implementation of the TOU Rate 58
5.3.2 The Implementation of the Optimal Demand Contract 59
5.3.3 The Participation of Interruptible Load 61
5.3.4 The Load Demand Automatic Control 62
5.3.5 The Load Demand Control and Monitor 65
5.3.6 Automatic Power Factor Compensation 66
5.4 Establishment of Battery Voltage Measurement Rules 67
5.4.1 Tracing Individual Voltage Response as Measurement 70
5.4.2 Tracing Total Voltage Response as Measurement 73
5.5 Devise Battery Load Management Strategy 76
5.5.1 Balance Charging Voltage and Current Implement (Strategy I) 76
5.5.2 Temperature Compensation during Battery Charging (Strategy II) 77
5.5.3 Replace Generators and Reduce Peak Power Consumption (Strategy III) 78
5.5.4 Prevent Battery Over-charge or Over-discharge (Strategy IV) 78
5.5.5 Battery Early Fault Precaution and Reliable Power Supply Improvement (Strategy V) 79
5.6 Discussion 80
VI CONCLUSION AND SUGGESTIONS 82
6.1 Conclusion 82
6.2 Suggestions 83
VII FUTURE WORKS 85
REFERENCES 87
PUBLICATION LIST 91
REFERENCES

[1]M. L. Chan, Load Management Master Plan for Taiwan Power Company. Sunnyvale, CA: ML Consulting Group, May 1996.
[2]L. Yao, W.-C. Chang, and R.-L. Yen, “An iterative deepening genetic algorithm for scheduling of direct load control,” IEEE Transactions on Power Systems, vol. 20, no. 2, pp. 1414-1421, May 2005.
[3]Lab of load management, Institute of Power Research, TPC, The Technologic Platform of Energy Management and Service for Customers, 2002.
[4]Hsiao, H.C., C.Y. Hsiao, M.C. Lin, Q.F. Wu and T.C. Chan, “Forecasting the Optimal Contract Capacities in Industrial Distribution Systems,” Proceeding of the 11th Symposium on Electrical Power Engineering, pp.215-220, Dec. 1990.
[5]Yang, C.G., R.T. Shu and G.K. Yang, “Load Management, Determination for the Optimal Contract Capacities,” Load Management Part II, Taiwan Power Company Internal Report, pp.105-122, May 1991.
[6]Lee,T.Y. and N. Chen,”Optimal Utility Contracts for Time-of-Use Rates Industrial customers,” Journal of the Chinese Institute of Electrical Engineering, Vol.1,No.4, pp.247-257, 1994.
[7] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proc. IEEE Int. Conf. Neural Netw. (ICNN), vol. 4, pp. 1942-1948, Nov. 1995.
[8] R. Eberhart and J. Kennedy, “A new optimizer using particle swarm theory,” in Proc. 6th Int. Symp. Micro Machine and Human Science (MHS), pp. 39-43, Oct. 1995.
[9] R. Eberhart, Y. Shi, and J. Kennedy, Swarm Intelligence. San Mateo, CA: Morgan Kaufmann, 2001.
[10] Kim, K.-W., M. Gen and M.-H. Kim, “Adaptive genetic algorithms for multi-resource constrained project scheduling problem with multiple modes,” International Journal of Innovative Computing, Information & Control, vol.2, no.1, pp.41-49, 2006.
[11] Maeda, Y. and Q. Li, “Parallel genetic algorithm with adaptive genetic parameters tuned by fuzzy reasoning,” International Journal of Innovative Computing, Information & Control, vol.1, no.1, pp.95-107, 2005.
[12] Chu, S.-C., J. F. Roddick and J. S. Pan, “Ant colony system with communication strategies,” Information Sciences, vol.167, pp.63-76, 2004.
[13] Chu, S.-C., J. F. Roddick, C.-J. Su and J.-S. Pan, “Constrained ant colony optimization for data clustering,” Proc. of the 8th Pacific Rim International Conference on Artificial Intelligence, LNAI3157, pp.534-543, 2004.
[14] Chu, S.-C., P.-W. Tsai and J.-S. Pan, “Cat swarm optimization,” Proc. of the 9th Pacific Rim International Conference on Artificial Intelligence, LNAI 4099, pp.854-858, 2006.
[15] Y. Shi and R. Eberhart, “Empirical study of particle swarm optimization,” in Proceedings of Congress on Evolutionary Computation, 1999, pp. 1945-1950.
[16] Iwasaki, N. and K. Yasuda, Adaptive particle swarm optimization using velocity feedback, International Journal of Innovative Computing, Information & Control, vol.1, no.3, 2005.
[17] J. Park, K. Lee, J. Shin, and K. Y. Lee, “A particle swarm optimization for economic dispatch with nonsmooth cost functions,” IEEE Transactions on Power Systems, vol. 20, no. 1, pp. 34-42, Feb. 2005.
[18] K. Y. Lee and J. Park, “Application of particle swarm optimization to economic dispatch problem: Advantages and disadvantage,” in Proc. IEEE PES Power Syst. Conf. Expo., pp. 188-192, Oct. 2006.
[19] T. Aruldoss, A. Victoire, and A. Jeyakumar, “Reserve constrained dynamic dispatch of units with valve-point effects,” IEEE Transactions on Power Systems, vol. 20, no. 3, pp. 1273-1282, Aug. 2005.
[20] Z. Gaing, “Particle swarm optimization to solving the economic dispatch considering the generator constraints,” IEEE Transactions on Power Systems, vol. 18, no. 3, pp. 1187-1195, Aug. 2003.
[21] N. Sinha and B. Purkayastha, “PSO embedded evolutionary programming technique for non-convex economic load dispatch,” in Proc. IEEE-PES Power Syst. Conf. Exposition, vol. 1, pp. 66-71, Oct. 2004.
[22] R. Pancholi and K. Swarup, “Particle swarm optimization for security constrained economic dispatch,” in Proc. Int. Conf. Intell. Sensing Inf. Process., pp. 7-12, Jan. 2004.
[23] B. Zhao, C. Guo, and Y. Cao, “Dynamic economic dispatch in electricity market using particle swarm optimization algorithm,” in Proc. IEEE 5th World Congr. Intell. Control Autom., pp. 5050-5054, Jun. 2004.
[24] A. El-Gallad, M. El-Hawary, A. Sallam, and A. Kalas, “Particle swarm optimizer for constrained economic dispatch with prohibited operating zones,” in Proc. 2002 IEEE Canadian Conf. Elect. Comput. Eng., vol. 1, pp. 78-81, May 2002.
[25] A. Kumar, K. Dhanushkodi, J. Kumar, and C. Paul, “Particle swarm optimization solution to emission and economic dispatch problem,” in Conf. Convergent Technologies for Asia-Pacific Region (TENCON-2003), vol. 1, pp. 435-439 Oct. 2003.
[26] H. Emara, M. Ammar, A. Bahgat, and H. Dorrah, “Stator fault estimation in induction motors using particle swarm optimization,” in Proc. IEEE Conf. Electric Machines and Drives, vol. 3, pp. 1469-1475, Jun. 2003.
[27] T. Gönen, Electrical Power Distribution System Engineering. New York: McGraw-Hill, 1986.
[28] C. Koay and D. Srinivasan, “Particle swarm optimization-based approach for generator maintenance scheduling,” in Proc. IEEE Swarm Intell. Symp., pp. 167-173, Apr. 2003.
[29]“Supervisor Control and Data Acquisition System Maintenance Book”, Control-Net International INC, 2000.
[30]Y. C. Chang and H. C. Tu, “An effective method for reducing power consumption-optimal chiller load distribution,” in Proc. IEEE Power Control, vol. 2, pp. 1169-1172, Jun. 2002.
[31]K. Y. Huang and Y. C. Huang, “Integrating direct load control with interruptible load management to provide instantaneous reserves for ancillary services,” IEEE Transactions on Power Systems, vol. 19, no. 3, pp. 1626-1634, Aug. 2004.
[32]Lee, T. F., Cho, Y. M., Hsiao, Y. C., Chao, P. J., and Fang, F. M., "Optimization and Implementation of a Load Control Scheduler Using Relaxed Dynamic Programming for Large Air Conditioner Loads," IEEE Transactions on Power Systems, Vol. 23, No. 2, pp.691-703, 2008.
[33]P. E. Pascoe and A. H. Anbuky, “Estimation of VRLS Battery Capacity Using The Analysis of The Coup de Fouet Region,” International Telecommunications Energy Conference, INTELEC, pp. 114-122, Oct. 1999.
[34]K. Kutluay, Y. Cadirci, Y.S. Ozkazanc, I. Cadirci, "A new online state-of-charge estimation and monitoring system for sealed lead-acid batteries in Telecommunication power supplies," IEEE Transactions on Industrial Electronics, vol. 52, no. 5, pp. 1315-1327, Oct. 2005.
[35]Yuang-Shung Lee, Wei-Yen Wang, Tsung-Yuan Kuo, "Soft Computing for Battery State-of-Charge (BSOC) Estimation in Battery String Systems," IEEE Transactions on Industrial Electronics, vol. 55, no. 1, pp. 229-239, Jan. 2008.
[36]Chalasani S. C., et. al., “Battery State of Health Estimation through Coup de Fouet”, the 22nd International Telecommunications Energy Conference, pp.597-601, Sep. 2000.
[37]P. E. Pascoe and A. H. Anbuky, “VRLA battery discharge reserve time estimation,” IEEE Transactions on Power Electronics, Vol. 19, No. 6 pp. 1515-1522, Nov. 2004.
[38]G. Bao, D. Zhang, J. Shi, and J. Jiang, “Optimal design for cogging torque reduction of transverse flux permanent motor using particle swarm optimization algorithm,” in Proc. IEEE Power Electron. Motion Control Conf., vol. 1, pp. 260-263, Aug. 2004.
[39]Y. del Valle, J. Hernandez, G. Venayagamoorthy, and R. Harley, “Optimal STATCOM sizing and placement using particle swarm optimization,” in Proc. IEEE PES Transmission and Distrib. Conf. Exposition,Latin America, Aug. 2006.
[40]C. Koay and D. Srinivasan, “Particle swarm optimization-based approach for generator maintenance scheduling,” in Proc. IEEE Swarm Intell. Symp., pp. 167-173, Apr. 2003.
[41]M. Miranda and N. Win-Oo, “New experiments with EPSO-Evolutionary particle swarm optimization,” in Proc. IEEE Swarm Intell. Symp., pp. 162–169, May 2006.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top