跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/06 08:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:曾智仁
研究生(外文):Chih-Jen Tseng
論文名稱:品質感知的動態群播選徑通信協定之研究
論文名稱(外文):Research on Dynamic IP Multicast QoS Routing Protocols
指導教授:陳秋華陳秋華引用關係
指導教授(外文):Chyou-Hwa Chen
學位類別:博士
校院名稱:國立臺灣科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:英文
論文頁數:183
中文關鍵詞:網際網路群播選徑通信協定動態選徑品質保證選徑
外文關鍵詞:IP multicast routing protocoldynamic routingQoS routing
相關次數:
  • 被引用被引用:0
  • 點閱點閱:269
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
近年來,在網際網路上提供多使用者分享即時影音多媒體之需求日漸增多。因此,品質保證之群播選徑技術更顯重要。許多現存之網際網路群播選徑通信協定已經成熟至足以標準化,然而它們卻無法提供可保證之服務品質以及它們的效能仍遭質疑。一些新提出的品質感知之方法能夠克服它們問題,然而許多其它之問題仍待解決諸如偏好特定之群組密度、在高度動態環境下容易建構不佳之群播傳輸樹及長選徑時間、以及因全面通知技術所造成的高通信與儲存負荷之擴充性問題。
在本論文中,吾人提出四種對策以解決出現於網際網路的品質保證動態群播選徑通信協定上之各種問題。首先,吾人提出一密度感知之DSDMR方法,其仰賴調適性雙向捜尋法以克服偏好特定的群組密度之問題。其次,吾人提出一與時間相關之T-TBP方法,其藉由路徑快取及路徑調整技術以改進非可重整式Steiner樹法所建構的群播傳輸樹之總成本。DSDMR與T-TBP均屬於應請求式架構,其具有依最新資訊來建構可實現群播傳輸樹以及適度的通信負荷與可忽視的儲存負荷之高擴充性優點。然而,應請求式架構所引起之長選徑時間問題造成其不易調適於會員頻繁改變之環境。預算路徑式架構可克服此項問題,然而卻得犧牲其通信與儲存負荷。結合以上兩種架構之優點,吾人提出一混合式PPMRP通信協定。其乃植基於限定範圍通知技術與機率式選擇具預算路徑能力的路由器之技術。再者,吾人提出一MQOSPF通信協定,其將群播之技術應用於一廣為人知的具預算
路徑能力之品質保證單點選徑的QOSPF通信協定。
近幾年有許多品質保證群播選徑之演算法被提出,其力求有效地計算可實現群播傳輸樹。然而,以通信協定之角度來看,一些其它重要論點諸如選徑法之效能與選徑法之負荷均須加以考量。欲展現吾人所提出的方法之優點,那些方法將與一些近年提出之品質保證群播選徑通信協定作比較。所有這些選徑法之效能與負荷將會以多方面之模擬來詳加評估。

With the proliferation of real-time audio and video applications shared by multiple users on the Internet, the importance of multicast QoS routing increases dramatically. Many existing IP multicast routing protocols are mature enough to be standardized but they still cannot support guaranteed quality of service and their performance are still doubted. Some newly proposed QoS-aware approaches can overcome this issue but there still are many problems such as favoring bias to specific group density population, constructing poor multicast delivery tree and long routing latency that suffers in highly dynamic environment, and the scalability problem in terms of both communication and storage overhead incurred by global advertising scheme.
In this dissertation, four efficient strategies are proposed to address those issues in the field of dynamic IP multicast QoS routing protocols. First, we propose a density sensitive approach named DSDMR, which relies on the scheme of adaptive bi-direction search to overcome the problem of favoring bias to specific group density. Second, a temporal-correlated T-TBP approach is designed to improve the total cost of multicast delivery tree, which is constructed by non-arrangement Steiner tree based approaches, via path caching and route adjustment techniques. Both the DSDMR and T-TBP approaches belong to the class of on-demand based scheme, which has the strengths of constructing feasible multicast tree via the most up-to-date information, and more scalable in terms of modest communication overhead and negligible storage overhead. However, the disadvantage of long routing latency make the on-demand based scheme hard to adapt to frequently changed membership. The precomputation-based approach can overcome this problem but needs to sacrifice both communication and storage overhead. To conjoin the benefits of both kinds of approaches, we propose a hybrid approach named PPMRP protocol based on the schemes of scope-limited advertisement and probabilistic selection of precomputation routers. Furthermore, another attempt called MQOSPF is also proposed, which is a very simple multicast extension of the well-known precomputation-based unicast QoS routing protocol named QOSPF.
Recently, there are many multicast QoS routing algorithms, which strive to efficiently compute feasible multicast delivery tree, have been proposed. However, from protocol aspect, some other important concerns including both routing performance and routing overhead need to be taken into account. To demonstrate the benefits of our proposals, we compare those proposals with some newly proposed multicast QoS routing protocols. Both performance and overhead for all those protocols are evaluated through the extensive simulations.

ABSTRACT (Chinese) ………………………………………………………..…… I
ABSTRACT ……………………………………………………………….……… II
ACKNOWLEDGEMENTS …………………………………………………..…. IV
TABLE OF CONTENTS ……………………………………………………..…. V
LIST OF TABLES ……………………….…………………………..…….……. VIII
LIST OF FIGURES ……………………………………………..…..……..….… IX
CHAPTERS
1 INTRODUCTION 1
1.1 Dynamic Multicast Routing in the Internet …………………………..... 1
1.2 QoS-Aware Multicast Routing in the Internet ...……..…………....…..... 5
1.3 Goal of the Dissertation …………………………………………….….. 9
1.4 Structure of Dissertation ……………………………………………...... 12
2 BACKGROUND 13
2.1 Model of Multicast QoS Routing Problem ……………………………. 14
2.2 Evaluation Criteria ………………………………...…………………... 17
2.3 Classification of Dynamic IP Multicast QoS Routing Protocols ……..... 20
2.3.1 On-Demand Based or Precomputation Based ………………....… 21
2.3.2 Shortest Path Tree Based or Steiner Tree Based ……………....… 27
2.3.3 Centralized or Distributed Computation of Multicast Tree …..... 30
2.4 On-Demand Based Multicast QoS Routing Protocols …………….….... 32
2.4.1 Greedy Strategies ……………………………………………...… 34
2.4.2 Shortest Path Tree Based Strategies ………………………….…. 37
2.5 Precomputation Based QoS Routing Protocols …………………….….. 39
2.5.1 Architecture of a Precomputation Based Protocol -- QOSPF ……. 40
2.5.2 Problem of Multicast Extension to QOSPF ……........…………… 42
2.6 Simulation Model ………………………………………………………. 43
3 DENSITY SENSITIVE MULTICAST ROUTING 47
3.1 Introduction …………………………………………………….………. 47 3.2 A Distributed Candidate Selection Algorithm --TJDD ………………… 49
3.2.1 General Description ……………………………………………… 49
3.2.2 Candidate Selection Criteria …………...………………………… 52
3.2.2 The Detail ………………………………………………….…….. 53
3.3 A Density Sensitive Routing Protocol -- DSDMR …………….……….. 56
3.3.1 Group Density Adaptability ………………………………..…..… 56
3.3.2 Effectiveness of Local Search ………………………………...…. 57
3.3.3 DSDMR - an Adaptive Bi-direction Join Protocol ……….…….... 59
3.4 Qualitative Performance Analysis ………………………………....…… 61
3.4.1 The Performance …………………………………………………. 61
3.4.2 The Overhead …………………………………………………….. 63
3.5 Simulation Results ……………………………………………….…...… 64
3.5.1 Group Density Effect ……………………………………….……. 66
3.5.2 Scalability Experiments …………………………………….……. 69
3.5.3 Experiments with Connection QoS Constraints …………….…… 71
3.6 Conclusions ………………………………………………………….….. 71
4 TEMPORAL DIMENSION IN DYNAMIC MULTICAST ROUTING 73
4.1 Introduction …………………………………………………….………. 73
4.2 Temporal Correlation …………………………………………………... 75
4.3 A Protocol Exploiting Temporal Dimension ……………………...…… 79
4.3.1 Tickets and Cached Residual Path ………………………………. 79
4.3.2 Temporal Correlated Search Procedure …………………………. 83
4.3.3 Merge Join Procedure …………………………………………… 87
4.4 Qualitative Performance Analysis ………………………………....…… 89
4.4.1 The Performance ……………………………………………...…. 89
4.4.2 The Overhead …………………………………………...……….. 91
4.5 Simulation Results ……………………………………...…………....… 91
4.5.1 Light Network Load ………………….…………………..…..….. 93
4.5.2 Heavy Network Load ………………………………………....…. 93
4.5.3 Lifetime of Cached Residual Path ……….…………………...…. 95
4.6 Conclusions …………………………………………………...….....….. 99
5 COMBINING PRECOMPUTATION AND ON-DEMAND COMPUTATION 100
5.1 Introduction ……………………………………………….………....…. 100
5.2 Mechanisms in Our Protocol ……………………………...………...…. 103
5.2.1 Scope-Limited Advertising ……………………………….….….. 103
5.2.2 Probabilistic Selection of Precomputation Router ………..…...... 105
5.2.3 The Precomputation Data Structures …………………...…..….... 106
5.3 The PPMRP Protocol …………………………………………..….....… 109
5.3.1 The Algorithm …………………………………………..…....…. 110
5.3.2 Guided Search and Path Selection ……………………..……....... 112
5.3.3 Scope-limited Advertising …………………………..…………... 114
5.3.4 Link State Database Maintenance …………………..…………... 116
5.4 Qualitative Performance Analysis ………………………..……....…..… 116
5.4.1 The Performance ………………………………….………....…... 117
5.4.2 The Overhead ……………………………………..……...…….... 119
5.5 Simulation Results ………………………………………...………....… 121
5.5.1 Routing Performance …………………………………….….…... 122
5.5.2 Effect of the Participation Probability ……………………..….… 127
5.5.3 The Overhead ………………………………………………....…. 129
5.6 Conclusions ……………………………………………………….…..... 131
6 MULTICAST EXTENSIONS TO QOSPF 133
6.1 Introduction ……………………………………………………..…....…. 133
6.2 QOSPF Extensions for Multicast Routing Support ……………….…...... 135
6.2.1 Scope-Limited Advertising …………………………………..….. 137
6.2.2 Multicast Routing Information Precomputation ……………...…. 138
6.2.3 The Trade-off Between Performance and Overhead ..………....... 142
6.3 The MQOSPF Protocol …………………………………………....……. 144
6.3.1 The Protocol …………………...………………………….…..…. 146
6.3.2 Scope-limited Advertising …………………………..………....... 149
6.3.3 Available Explicit Routes Precomputation ………..……..…..…. 150
6.3.4 Path Selection ………………………………………………...…. 151
6.4 Qualitative Performance Analysis ………………………………..….… 152
6.4.1 The Performance ……………………………………….…….…. 153
6.4.2 The Overhead …………………………………………….……... 155
6.5 Simulation Results ………………………………………………..….… 157
6.5.1 Light Network Load …………………………..……………..….. 158
6.5.2 Heavy Network Load ………..…………………………….......… 161
6.5.3 Scalability Experiments ……………………………………....…. 164
6.6 Conclusions …………………………………………………………….. 167
7 CONCLUSION 169
7.1 Summary of Main Contributions …………………………………....….. 170
7.2 Future Works …………………………...…………………………...….. 172
BIBLIOGRAPHY ……………………………………………………………..… 174
VITA ………………………………………………………………………….….. 182
PUBLICATION LIST ……………………………………………………….….. 183

[1] C. Diot, W. Dabbous, and J. Crowcroft, "Multipoint Communications: a Survey of Protocols, Functions, and Mechanisms," IEEE J. Sel. Areas Comm., Vol.15, No.3, pp.277-290 (1997).
[2] O. Hermanns, M. Schuba, "Performance Investigations of the IP Multicast Architecture," Computer Networks and ISDN Systems, Vol.28, No.4, pp.429-439 (1996).
[3] S. Deering, D. Cheriton, "Multicast Routing in Datagram Internetworks and Extended LANs," ACM Trans. Comp. Sys., Vol.8, No.2, pp.85-111 (1990).
[4] S. Deering, Host extensions for IP multicasting, RFC1112, August (1989).
[5] B. Fenner, M. Handley, H. Holbrook, and I. Kouvelas, "Protocol Independent Multicast - Sparse Mode (PIM-SM): Protocol Specification (Revised)," Internet draft, draft-ietf-pim-sm-v2-new-07.txt, March (2003).
[6] A. Adams, J. Nicholas, and W. Siadak, "Protocol Independent Multicast - Dense Mode (PIM-DM): Protocol Specification (Revised)," Internet draft, draft-ietf-pim-dm-new-v2-03.txt, Feb. (2003).
[7] T. Pusateri, "Distance Vector Multicast Routing Protocol," Internet draft, draft-ietf-idmr-dvmrp-v3-10.txt, August (2000).
[8] J. Lin and R.S. Chang, "A Comparison of the Internet Multicast Routing Protocols," Computer Communications 22, pp.144-155 (1999).
[9] A. Ballardie, B. Cain, and Z. Zhang, "Core Based Trees (CBT version 3) Multicast Routing: Protocol Specification," Internet draft, draft-ietf-idmr-cbt-spec-v3-01.txt, August (1998).
[10] T. Billhartz, J. Cain, E. Farrey-Goudreau, D. Fieg, and S. Batsell, "Performance and Resource Cost Comparisons for CBT and PIM Multicast Routing Protocols," IEEE J. Sel. Areas Comm., Vol.15, No.3, pp.304-315, April (1997).[11] J. Moy, "Multicast Extensions to OSPF," RFC 1584, March (1994).
[12] J. Moy, "Multicast Routing Extensions for OSPF," Comm. of the ACM, Vol.37, No.8, pp.61-66, August (1994).
[13] H. Salama, "Multicast Routing for Real-time Communication on High-Speed Networks" PhD Thesis, U. of North Carolina State (1996).
[14] S. Ramanathan, "Multicast Tree Generation in Networks with Asymmetric Links," IEEE/ACM Trans. on Networking, Vol.4, No.4, pp.558-568, August (1996).
[15] F. Bauer and A. Varma, "Distributed Algorithms for Multicast Path Setup in Data Networks," IEEE/ACM Trans. on Networking, Vol.4, No.2, pp.181-191, April (1996).
[16] L. Wei and D. Estrin, "The Trade-Offs of Multicast Trees and Algorithms," Proc. of the Third International Conference on Computer Communications and Networking (IC3N), pp.17-24 (1994).
[17] Y. Tanaka and P.C. Huang, "Multiple Destination Routing Algorithms," IEICE Trans. on Comm., Vol.E76-B, No.5, pp.544-552, May (1993).
[18] X. Jiang, "Distributed Path Finding Algorithm for Stream Multicast," Computer Commun., Vol.16, No.12, pp.767-775, Dec. (1993).
[19] X. Jiang, "Routing Broadband Multicast Streams," Computer Commun., Vol.15, No.1, pp.45-51, Jan./Feb. (1992).
[20] K. Bharathi-Kumar and J.M. Jaffe, "Routing to Multiple Destinations in Computer Networks," IEEE Trans. on Comm., Vol.COM-31, No.3, pp.343-351, March (1983).
[21] T. Asaka, T. Miyoshi, and Y. Tanaka, "Label Algorithm for Delay-Constrained Dynamic Multicast Routing," IEICE Trans. Commun., Vol.E84-B, No.1, pp.55-62, Jan. (2001).
[22] T. Asaka, T. Miyoshi, and Y. Tanaka, "Dynamic Multicast Routing Algorithm Using Predetermined Path Search," IEICE Trans. Commun., Vol.E83-B, No.5, pp.1128-1135, May (2000).
[23] J. Cho and J. Breen, "Analysis of the Performance of Dynamic Multicast Routing Algorithms," Computer Communications 22, pp.667-674 (1999).
[24] S. Raghavan, G. Manimaran, and C. Siva Ram Murthy, "A Rearrangeable Algorithm for the Construction of Delay-Constrained Dynamic Multicast Trees," IEEE/ACM Trans. on Networking, Vol.7, No.4, August (1999).
[25] A. Hac and K. Zhou, "A New Heuristic Algorithm for Finding Minimum-Cost Multicast Trees with Bounded Path Delay," International Journal of Network Management 9, pp.265-278 (1999).
[26] B.H. Ryu, M. Murata, and H. Miyahara, "A Dynamic Application-Oriented Multicast Routing for Virtual-Path Based ATM Networks," IEICE Trans. Commun., Vol.E80-B, No.11, pp.1654-1663, Nov. (1997).
[27] F. Bauer and A. Varma, "ARIES: a Rearrangeable Inexpensive Edge-Based On-Line Steiner Algorithm," Proc. of IEEE INFOCOM, pp.361-368 (1996).
[28] E. Biersack and J. Nonnenmacher, "WAVE: A New Multicast Routing Algorithm for Static and Dynamic Multicast Groups," Proc. of the Fifth International Workshop on Network and Operating System Support for Digital Audio and Video, pp.228-239 (1995).
[29] W. Effelsberg and E. Muller-Menrad, "Dynamic Join and Leave for Real-Time Multicast," TR-93-056, International Computer Science Institute, Berkeley, October (1993).
[30] M. Doar and I. Leslie, "How Bad is Naive Multicast Routing," Proc. of IEEE INFOCOM, pp.82-89 (1993).
[31] B.M. Waxman, "Performance Evaluation of Multipoint Routing Algorithms," Proc. of IEEE INFOCOM, pp.980-986 (1993).
[32] M. Imase and B. M. Waxman, "Dynamic Steiner Tree Problem," SIAM J. Disc. Math., Vol.4, No.3,pp.369-384, August (1991).
[33] B.M. Waxman, "Routing of Multipoint Connections," IEEE J. Sel. Areas Comm. Vol.6, No.9, pp.1617-1622 (1988).
[34] T. Korkmaz and M. Krunz, "A Randomized Algorithm for Finding a Path Subject to Multiple QoS Requirements," Computer Networks 36, pp.251-268 (2001).
[35] S. Nelakuditi, Z.L. Zhang, and R.P. Tsang, "Adaptive Proportional Routing: A Localized QoS Routing Approach," Proc. of IEEE INFOCOM (2000).
[36] A. Shaikh, J. Rexford, and K.G. Shin, "Load-sensitive Routing of Long-Lived IP flows," ACM SIGCOMM (1999).
[37] G. Apostolopoulos, R. Guerin, S. Kamat, and S.K. Tripathi, "Quality of Service Based Routing: a Performance Perspective," Proc. of ACM SIGCOMM, Sept. (1998).
[38] S. Chen and K. Nahrstedt, "An Overview of Quality of Service Routing for Next-Generation High-speed Networks: Problems and Solutions," IEEE Network, pp.64-79, Nov./Dec. (1998).
[39] Z. Wang and J. Crowcroft, "Quality of Service Routing for Supporting Multimedia Applications," IEEE J. Sel. Areas Comm., Vol.14, No.7, pp.1228-1234 (1996).
[40] G. Apostolopoulos, R. Guerin, and S. Kamat, "Implementation and Performance Measurements of QoS Routing Extensions to OSPF," Proc. of IEEE INFOCOM (1999).
[41] G. Apostolopoulos, R. Guerin, S. Kamat, A. Orda, and S. K. Tripathi, "Intra-Domain QoS Routing in IP Networks: A Feasibility and Cost/Benefit Analysis," IEEE Network (Special Issue on Integrated and Differentiated Services for the Internet), Vol.13, No.5, pp.42-54, September/October (1999).
[42] G. Apostolopoulos, D. Williams, S. Kamat, R. Guerin, A. Orda, and T. Przygienda, "QoS Routing Mechanisms and OSPF Extensions," RFC2676, (Status: Experimental), August (1999).
[43] C. Casetti, R.L. Cigno, M. Mellia, M. Munafo, and Z. Zoltan, "A New Class of QoS Routing Strategies Based on Network Graph Reduction," Proc. of IEEE INFOCOM (2002).
[44] Jingchao Chen, "Efficient Heuristic Algorithms for Finding Multi-constrained Paths," Proc. of IEEE ICC (2002).
[45] X. Yuan and X. Liu, "Heuristic Algorithms for Multi-Constrained Quality of Service Routing," Proc. of INFOCOM (2001).
[46] G. Liu and K.G. Ramakrishnan, A*Prune: An Algorithm for Finding K Shortest Paths Subject to Multiple Constraints," Proc. of INFOCOM (2001).
[47] T. Korkmaz, M. Krunz, and S. Tragoudas, An Efficient Algorithm for Finding a Path Subject to Two Additive Constraints," Computer Commun. J. (2000).
[48] X. Yuan, "On the Extended Bellman-Ford Algorithm to Solve Two-Constrained Quality of Service Routing Problems," Proc. of IC3N (1999).
[49] S. Chen and K. Nahrstedt, "On Finding Multi-Constrained Paths," Proc. of IEEE ICC, June (1998).
[50] W.C. Lee, M.G. Hluchyj, and P.A. Humblet, "Routing Subject to Quality of Service Constrains in Integrated Communication Networks," IEEE Networks, pp.46-55, July/August (1995).
[51] J. L. Sobrinho, "Algebra and Algorithms for QoS Path Computation and Hop-by-Hop Routing in the Internet," IEEE Trans. on Networking, pp.541-550, August (2002).
[52] P.V. Mieghem, H. D. Neve, and F. Kuipers, "Hop-by-Hop Quality of Service Routing," Computer Networks, Vol.37, No.3/4, pp.407-423 (2001).
[53] S. Chen and K. Nahrstedt, "Distributed Quality-of-Service Routing in Ad-Hoc Networks," IEEE J. Sel. Areas Comm., Vol.17, No.8, pp.1488-1505, August (1999).
[54] S. Chen and K. Nahrstedt, "Distributed Quality-of-Service Routing in High-Speed Networks Based on Selective Probing," Proc. of LCN (1998).
[55] H. Tanioka, K. Kinoshita, and K. Murakami, "Multipoint-to-Multipoint Routing for Multimedia Communication Service," Proc. of IEEE ICC (2002).
[56] W. Zhengying, S. Bingxin, and Z. Erdun, "Bandwidth-Delay-Constrained Least-Cost Multicast Routing Based on Heuristic Genetic Algorithm," Computer Communications 24, pp.685-692 (2001).
[57] C.P. Low, "Loop-Free Multicast Routing with End-to-End Delay Constraint," Computer Communications 22, pp181-192 (1999).
[58] S. Raghavan, G. Manimaran, C. Siva Ram Murthy, "Algorithms for Delay-Constrained Low-Cost Multicast Tree Construction," Computer Communications, Vol.21, No.18, pp.1693-1706, Nov. (1998).
[59] F. Kuipers and P.V. Mieghem, "MAMCRA: Constrained-Based Multicast Routing Algorithm," Computer Communications, Vol. 25/8, pp.801-810, May (2002).
[60] A. Fei and M. Gerla, "Receiver-Initiated Multicasting with Multiple QoS Constraints," Proc. of IEEE INFOCOM (2000).
[61] Q. Zhu, M. Parsa, and J. Garcia-Luna-Aceves, "A source-based algorithm for delay-constrained minimum-cost multicasting," Proc. of IEEE INFOCOM (1995).
[62] V. Kompella, J. Pasquale, and G. Polyzos, "Multicast routing for multimedia communication," IEEE/ACM Trans on Networking, Vol.1, No.3, pp.286-292, June (1993).
[63] C.J. Tseng and C.H. Chen, "Exploiting the Temporal Dimension in QoS-Aware Multicast Routing," Computer Communications, Vol.26/12, pp.1274-1287, (2003).
[64] C.J. Tseng, C.H. Chen, "The Performance of QoS-Aware Multicast Routing Protocols," to appear in Networks (2003).
[65] S. Swaminathan and G. Manimaran, "A QoS Multicast Routing Protocol for Resource-Intensive Groups," Proc. of IEEE ICC (2002).
[66] Z. Li and P. Mohapatra, "QoS-Aware Multicast Protocol Using Bounded Flooding (QMBF) Technique," Proc. of IEEE ICC (2002).
[67] S. Chen, K. Nahrstedt, and Y. Shavitt, "A QoS-Aware Multicast Routing Protocol," Proc. of IEEE INFOCOM (2000).
[68] K. Carlberg, "QoS Multicast Using Single Metric Unicast Routing," PhD thesis, U. of College London, October (1999).
[69] M. Faloutsos, A. Banerjea, and R. Pankaj, "QoSMIC: Quality of Service Sensitive Multicast Internet Protocol," ACM SIGCOMM, Vancouver, British Columbia, Sept. (1998).
[70] A. Banerjea, M. Faloutsos, and R. Pankaj, "Designing QoSMIC: a QoS Multicast Internet Protocol," Internet Draft, draft-banerjea-qosmic-00.[ps,txt] (1998).
[71] K. Carlberg and J. Crowcroft, "Building Shared Tree Using a One-to-Many Joining Mechanism," ACM Computer Communication Review, pp.5-11, January (1997).
[72] A. Shaikh, J. Rexford, and K.G. Shin, "Evaluating the Impact of Stale Link State on Quality-of-Service Routing," IEEE/ACM Trans. on Networking, Vol.9, No.2, pp.162-176, April (2001).
[73] R.A. Guerin and A. Orda, "QoS Routing in Networks with Inaccurate Information: Theory and Algorithms," IEEE/ACM Trans. on Networking, Vol.7, No.3, pp.350-364, June (1999).
[74] S. Chen and K. Nahrstedt, "Distributed QoS routing with Imprecise State Information," Proc. of IC3N (1998).
[75] A. Orda and A. Sprintson, "QoS Routing: The Precomputation Perspective," Proc. of IEEE INFOCOM (2000).
[76] G. Apostolopoulos and S.K. Tripathi, On the Effectiveness of Path Pre-Computation in Reducing the Processing Cost of On-Demand QoS Path Computation," Proc. of IEEE ICC (1998).
[77] A. Shaikh, J. Rexford and K.G. Shin, Efficient Precomputation of Quality-of-Service Routes," Proc. of NOSSDAV (1998).
[78] Q. Ma and P. Steenkiste, "On Path Selection for Traffic with Bandwidth Guarantees," Proc. of ICNP (1997).
[79] X. Su and G.D. Veciana, "Source Routing in Networks with Uncertainty: Inference, Sensitivity and Path Caching," Proc. of GLOBECOM (2000).
[80] G. Apostolopoulos, R. Guerin, S. Kamat, S.K. Tripathi, On Reducing the Processing Cost of On-Demand QoS Path Computation," Journal of High Speed Networking, Vol.7, No.2 (1998).
[81] M. Peyravian and A.D. Kshemkalyani, "Network Path Caching: Issues, Algorithms and a Simulation Study," Computer Communications 20, pp.605-614 (1997).
[82] M. Peyravian and A.D. Kshemkalyani, "Path Caching in Connection-Oriented Networks," Proc. of IEEE ICC (1996).
[83] L. Zhang, S. Deering, D. Estrin, S. Shenker, and D. Zapala, "RSVP: A New Resource Reservation Protocol," IEEE Networks, pp.8-18, Sept. (1993).
[84] L. Gao and D. Towsley, "Supplying Instantaneous Video-on-Demand Services Using Controlled Multicast," Proc. of IEEE MMCS (1999).
[85] C. Griwodz, M. Bar, and L.C. Wolf, "Long-Term Movie Popularity Models in Video-on-Demand Systems or the Life of an On-Demand Movie," ACM Multimedia, pp.349-357 (1997).
[86] E. W. Zegura, K. L. Calvert, and M. J. Donahoo, "A Quantitative Comparison of Graph-Based Models for Internet Topology," IEEE Trans. on Networking, Dec. (1997).
[87] K. Calvert, M. Doar, and E. W. Zegura, "Modeling Internet Topology," IEEE Communications Magazine, June (1997).
[88] M. B. Doar, "A Better Model for Generating Test Networks," Proc. of IEEE Global Internet," Nov. (1996).
[89] S. Casner, Major MBONE routers and links, available from ftp://ftp.isi.edu/mbone/mbone-topology.ps (1994).
[90] K. Almeroth, "A Long-Term Analysis of Growth and Usage Patterns in the Multicast Backbone (MBone)," Proc. of IEEE INFOCOM (2000).
[91] K.C. Almeroth and M.H. Ammar, "Multicast Group Behavior in the Internet’s Multicast Backbone (MBone)," IEEE Communications (1997).
[92] K. C. Almeroth and M.H. Ammar, "Collecting and Modeling the Join/Leave Behavior of Multicast Group Members in the Mbone," Proc. of HPDC, pp.209-216 (1996).
[93] T. Friedman and D. Towsley, "Multicast Session Membership Size Estimation," IEEE INFOCOM, New York, USA, March (1999).
[94] D. Kosiur, IP Multicasting: the Complete Guide to Interactive Corporate Networks, John Wiley & Sons, New York (1998).
[95] T.H. Corman, C.E. Leiserson, and R.L. Rivest, Introduction to algorithms, McGraw-Hill (1989).
[96] VINT project, Network simulator ns-2, http://www.isi.edu/nsnam/vint/.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top