|
1.B. PI, Intraosseous Anchorage Of Dental Prosthesis I Experimental Study, Scand J Plast Reconstructr Surg. vol. 3. 1969, pp. 81-100. 2.T. Albrektsson, P.I. Branemark, H.A. Hansson, and J. Lindstrom, Osseointegrated Titanium Implants - Requirements for Ensuring a Long-Lasting, Direct Bone-to-Implant Anchorage in Man, Acta Orthopaedica Scandinavica. vol. 52, no. 2, 1981. 1981, pp. 155-170. 3.T. WT, Prentice-Hall, New York, 1995. 4.E.e. al, Eur. J. Oral Sci. vol. 106. 1998, p. 721. 5.B. R, A Biomechanical Study of Osseointegration, Goteborg University, 1996. 6.R.M. Pilliar, D.A. Deporter, P.A. Watson, and N. Valiquette, Dental Implant Design - Effect on Bone Remodeling, Journal of Biomedical Materials Research. vol. 25, no. 4, Apr. 1991, pp. 467-483. 7.C. Maniatopoulos, R.M. Pilliar, and D.C. Smith, Threaded Versus Porous-Surfaced Designs for Implant Stabilization in Bone-Endodontic Implant Model, Journal of Biomedical Materials Research. vol. 20, no. 9, Nov-Dec. 1986, pp. 1309-1333. 8.J.L. Ricci and H. Alexander, Laser Microtexturing of Implant Surfaces for Enhanced Tissue Integration, Functional Biomaterials. vol. 198-1, 2001. 2001, pp. 179-202. 9.R. Stangl, B. Rinne, S. Kastl, and C. Hendrich, The Influence of Pore Geometry in Cp Ti-Implants: A Cell Culture Investigation, European Cells & Materials. vol. 2, no. Cited March 7, 2003, July 12. 2001, pp. 1-9. 10.A. Joob-Fancsaly, T. Divinyi, A. Fazekas, C. Daroczi, A. Karacs, and G. Peto, Pulsed Laser-Induced Micro- and Nanosized Morphology and Composition of Titanium Dental Implants, Smart Materials & Structures. vol. 11, no. 5, Oct. 2002, pp. 819-824. 11.G. Peto, A. Karacs, Z. Paszti, L. Guczi, T. Divinyi, and A. Joob, Surface Treatment of Screw Shaped Titanium Dental Implants by High Intensity Laser Pulses, Applied Surface Science. vol. 186, no. 1-4, Jan 28. 2002, pp. 7-13. 12.M. Bereznai, I. Pelsoczi, Z. Toth, K. Turzo, M. Radnai, Z. Bor, and A. Fazekas, Surface Modifications Induced by Ns and Sub-Ps Excimer Laser Pulses on Titanium Implant Material, Biomaterials. vol. 24, no. 23, Oct. 2003, pp. 4197-4203. 13.L.F. Cooper, Biologic Determinants of Bone Formation for Osseointegration: Clues for Future Clinical Improvements, Journal of Prosthetic Dentistry. vol. 80, no. 4, Oct. 1998, pp. 439-449. 14.A. Nanci, J.D. Wuest, L. Peru, P. Brunet, V. Sharma, S. Zalzal, and M.D. McKee, Chemical Modification of Titanium Surfaces for Covalent Attachment of Biological Molecules, Journal of Biomedical Materials Research. vol. 40, no. 2, May. 1998, pp. 324-335. 15.A.E. Clark, L.L. Hench, and H.A. Paschall, Influence of Surface Chemistry on Implant Interface Histology - Theoretical Basis for Implant Materials Selection, Journal of Biomedical Materials Research. vol. 10, no. 2, 1976. 1976, pp. 161-174. 16.M. Jarcho, Biomaterial Aspects of Calcium Phosphates - Properties and Applications, Dental Clinics of North America. vol. 30, no. 1, Jan. 1986, pp. 25-47. 17.B. Kasemo, Biocompatibility of Titanium Implants - Surface Science Aspects, Journal of Prosthetic Dentistry. vol. 49, no. 6, 1983. 1983, pp. 832-837. 18.K.A. Thomas, J.F. Kay, S.D. Cook, and M. Jarcho, The Effect of Surface Macrotexture and Hydroxylapatite Coating on the Mechanical Strengths and Histologic Profiles of Titanium Implant Materials, Journal of Biomedical Materials Research. vol. 21, no. 12, Dec. 1987, pp. 1395-1414. 19.D.A. Puleo and A. Nanci, Understanding and Controlling the Bone-Implant Interface, Biomaterials. vol. 20, no. 23-24, Dec. 1999, pp. 2311-2321. 20.S.Z. Boyan BD, Hambleton JC, Response of Bone and Cartilage Cells to Biomaterials in Vivo and in Vitro, J Oral Implantol. vol. 19, no. 116. 1993, p. 22. 21.Z. Schwartz, L.D. Swain, T. Marshall, J. Sela, U. Gross, D. Amir, C. Mullermai, and B.D. Boyan, Modulation of Matrix Vesicle Enzyme-Activity and Phosphatidylserine Content by Ceramic Implant Materials During Endosteal Bone Healing, Calcified Tissue International. vol. 51, no. 6, Dec. 1992, pp. 429-437. 22.J.G. Stanford CM, Fakhry A, Gratton D, Mellonig JT, Wanger W, Outcomes of a Fluoride Modified Implant One Year after Loading in the Posterior-Maxilla When Placed with the Osteotome Surgical Technique, Appl Osseointegration Res vol. 5, no. 50. 2006, p. 5. 23.G. Mendonca, D.B.S. Mendonca, F.J.L. Aragao, and L.F. Cooper, Advancing Dental Implant Surface Technology - from Micron- to Nanotopography, Biomaterials. vol. 29, no. 28, Oct. 2008, pp. 3822-3835. 24.Bloember.N, Laser-Induced Electric Breakdown in Solids, Ieee Journal of Quantum Electronics. vol. QE10, no. 3, 1974. 1974, pp. 375-386. 25.C.B. Schaffer, A. Brodeur, and E. Mazur, Laser-Induced Breakdown and Damage in Bulk Transparent Materials Induced by Tightly Focused Femtosecond Laser Pulses, Measurement Science & Technology. vol. 12, no. 11, Nov. 2001, pp. 1784-1794. 26.V. Oliveira, S. Ausset, and R. Vilar, Surface Micro/Nanostructuring of Titanium under Stationary and Non-Stationary Femtosecond Laser Irradiation, Applied Surface Science. vol. 255, no. 17, Jun 15. 2009, pp. 7556-7560. 27.F.-X. D'Abzac, A.-M. Seydoux-Guillaume, J. Chmeleff, L. Datas, and F. Poitrasson, In Situ Characterization of Infra Red Femtosecond Laser Ablation in Geological Samples. Part B: The Laser Induced Particles, Journal of Analytical Atomic Spectrometry. vol. 27, no. 1, 2012. 2012, pp. 108-119. 28.D. vonderLinde, K. SokolowskiTinten, and J. Bialkowski, Laser-Solid Interaction in the Femtosecond Time Regime, Applied Surface Science. vol. 109, Feb. 1997, pp. 1-10. 29.Y.S. Lizhong Lu, Chenguang Xu, Guidong Xu, Jijun Wang, Baiqiang Xu, The Influence of Pulse Width and Energy on Temperature Field in Metal Irradiated by Ultrashort-Pulsed Laser, Physics Procedia. vol. 32. 2012, pp. 39-47. 30.H. Hu, X. Wang, and H. Zhai, High-Fluence Femtosecond Laser Ablation of Silica Glass: Effects of Laser-Induced Pressure, Journal of Physics D-Applied Physics. vol. 44, no. 13, Apr 6. 2011. 31.N.P. Lang, G.E. Salvi, G. Huynh-Ba, S. Ivanovski, N. Donos, and D.D. Bosshardt, Early Osseointegration to Hydrophilic and Hydrophobic Implant Surfaces in Humans, Clinical Oral Implants Research. vol. 22, no. 4, Apr. 2011, pp. 349-356. 32.R. Wenzel, Resistance of solid Surfaces to wetting by water, Industrial & Engineering Chemistry. 1936. 33.A.B.D.C.a.S. Baxter, Wettability of Porous Surfaces, Trans. Faraday Soc, no. 40. 1944, pp. 546-551. 34.M. Ogino, F. Ohuchi, and L.L. Hench, Compositional Dependence of the Formation of Calcium-Phosphate Films on Bioglass, Journal of Biomedical Materials Research. vol. 14, no. 1, 1980. 1980, pp. 55-64. 35.T. Kitsugi, T. Nakamura, T. Yamamura, T. Kokubu, T. Shibuya, and M. Takagi, Sem-Epma Observation of 3 Types of Apatite-Containing Glass-Ceramics Implanted in Bone - the Variance of a Ca-P-Rich Layer, Journal of Biomedical Materials Research. vol. 21, no. 10, Oct. 1987, pp. 1255-1271. 36.C.O. T. Kokubo, S. Kotani, T. Kitsugi and T. Yamamuro, Surface structure of bioactiveglass-Ceramic aw implanted into sheep and human vertebra, Bioceramics. vol. 2. 1990, pp. 113-121. 37.P.J. Li, C. Ohtsuki, T. Kokubo, K. Nakanishi, N. Soga, and K. Degroot, The Role of Hydrated Silica, Titania, and Alumina in Inducing Apatite on Implants, Journal of Biomedical Materials Research. vol. 28, no. 1, Jan. 1994, pp. 7-15.
|