跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.136) 您好!臺灣時間:2025/09/20 22:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳詩婷
研究生(外文):Chen, Shih-Ting
論文名稱:腦中風病患步行時動態足壓承重型態與足壓相關參數之分析
論文名稱(外文):Analysis of dynamic foot-pressure loading patterns and parameters during walking in patients with stroke
指導教授:湯佩芳
指導教授(外文):Tang, Pei-Fang
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:物理治療學研究所
學門:醫藥衛生學門
學類:復健醫學學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:149
中文關鍵詞:中風步態動力學重複測試信度承重型態足底壓力
外文關鍵詞:strokegaitkineticsreliabilityloading patternfoot pressure
相關次數:
  • 被引用被引用:1
  • 點閱點閱:373
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:3
目的:本研究之目的為探討:一、用攜帶型足壓量測系統偵測中風病患於舒適速度行走時之動態足壓相關參數之重複測試信度;二、中風病患健、患側下肢與健康人於舒適速度行走時之足壓承重型態與足壓中心型式;三、中風病患健、患側下肢與健康人於整體足底區域與足底分區之足壓相關參數異同。
方法:共有13位輕中度中風病患(56.5 ±15.2歲,發病期21.7 ±6.9 月,8男5女)與13位健康成年人(55.6 ±15.9歲,8男5女)參與本研究。中風病患之行走速度、傅格-梅爾評估量表之下肢動作得分與伯格平衡量表得分平均分別為0.70(±0.26)公尺/秒、24.7(±15.3)分與49.8(±4.0)分。進行動態足壓與步態測試時,每位受試者均穿上攜帶型Pedar感測鞋墊在步態分析儀上以舒適速度行走6回(共36公尺)。其中有7位中風6個月以上且其下肢動作功能恢復穩定之慢性期病患,接受二次間隔一星期之測試,以探討動態足壓量測系統之重複測試信度。研究中以Novel足壓分析軟體(Novel gmbh, Munich, Germany)分析整體足底區域與足底分區之足壓承重型態、足壓中心型式與動態足壓相關參數。統計上,以類組內相關係數(ICC【3,1】)檢定動態足壓相關參數之重複測試信度,以敘述性統計描述整體足底區域與足底分區之足壓承重型態。以卡方檢定(Chi-square)分析組間足壓中心起、始位置之差異,以單因子變異數分析法(one-way analysis of variance)檢定組間於整體足底區域動態足壓相關參數之差異。以二維單因子變異數之重複量數分析方法(two-way repeated measures of analysis of variance)檢定組間與足底分區(重複量數)間動態足壓相關參數之差異。
結果:中風病患兩側整體足底區域與足底分區之承重時間、平均受力、衝量、足壓中心移動距離、足壓中心平均移動速率、足壓中心前後位移速度與患側下肢之足壓中心前後位移均可獲得統計上有意義之中至極高度重複測試信度(ICC = 0.532 ~ 0.988, p < 0.05),但健側下肢之足壓中心前後位移未達到統計上有意義之重複測試信度(ICC = 0.461, p = 0.122)。健康人於整體足底區域之足壓承重主要型態為雙峰型(77.6 %),中風健側與患側則皆為平原多峰型(健側70.9 %;患側63.5 %)。健康人於腳跟區域之主要型態為平滑單峰型(86.0 %),中風健側與患側則皆為平原多峰型(健側53.4 %;患側31.8 %)。健康人於腳中段區域之足壓承重型態為平滑緩波型(77.4 %),中風健側與患側皆是類平滑緩波型(健側83.3 %;患側77.7 %)。健康人於腳前段區域之足壓承重型態為平滑單峰型(62.5 %),中風健側為類平滑單峰型(65.8 %),中風患側則以類平滑單峰型(31.8 %)與平原多峰型(24.9 %)為主。卡方檢定結果顯示組間之足壓中心起點位置分佈頻率均有顯著差異(p < 0.017),健康人之足壓中心起點主要落在腳跟區域(96.5 %),中風健側的有極少部分落在腳前段區域(3.4 %)與腳中段區域(0.4 %),中風患側的則有部分落在腳前段區域(8.5 %)與腳中段區域(15.8 %)。整體足底區域方面,中風健側之承重時間、衝量與足壓中心移動距離均顯著高於健康人(p < 0.017),中風健側之平均受力顯著高於患側(p < 0.017),中風患側之足壓中心前後位移速度顯著低於健康人(p < 0.017)。承重時間、平均受力與衝量參數於組間與足底分區間的交互效果並不顯著(p = 0.484;p = 0.130;p = 0.140)。所有受試者皆是腳跟區域與腳前段區域之承重時間、平均受力與衝量顯著高於腳中段區域(p < 0.017);中風健側於三足底分區之承重時間與衝量顯著高於健康人的(p < 0.017),其衝量亦顯著高於中風患側的(p < 0.017)。
結論:用攜帶型足壓量測系統測試輕中度中風病患於舒適速度步行時之動態足壓相關參數具良好之重複測試信度。足壓承重型態可用來評估中風病患之下肢承重。中風健、患側下肢之足壓承重型態均與健康人不同,中風健側下肢以腳跟區域受影響最大,主要呈現無單峰趨勢之平原多峰型;中風患側下肢之腳跟區域與腳前段區域均會受影響且其足壓承重型態的分佈呈現較零、不集中之趨勢。中風健、患側下肢之足壓中心起點位置分佈亦與健康人不同。評估中風病患下肢承重時,足壓承重型態與足壓相關參數可用於分析中風步態之缺失。

Purposes: The purposes of this study were: first, to evaluate the reliability of in-shoe foot pressure measurement system for stroke patients walking at comfortable speeds; second, to investigate the dynamic foot-pressure loading patterns and the center of foot-pressure (COFP) loading patterns of stroke patients and healthy adults; third, to investigate the differences in the dynamic foot-pressure parameters of stroke patients and healthy adults in the whole foot and specific foot areas (heel, midfoot, and forefoot) during comfortable-speed walking.
Method: Thirteen mild to moderate stroke patients (mean age = 56.5 ± 15.2 years, post-stroke time = 21.7 ± 6.9 months, 8 males, 5 females) and 13 age-matched healthy adults participated in this study. Walking speed, Fugl-Meyer Assessment of lower extremity motor function, and Berg Balance Scale of stroke patients were 0.70 (± 0.26) m/s, 24.7 (± 15.3) score and 49.8 (± 4.0) score. Dynamic foot-pressure loading patterns and parameters were tested by using the Pedar in-shoe measurement system and GMII system in comfortable-speed walking for 6 runs (total 36 m). Seven of the stoke patients, whose post-onset time was longer than 6 months and the recovery of motor function was stable, also participated in the test-retest reliability test one week later. Dynamic foot-pressure loading patterns and parameters in the whole foot and three specific foot areas were analyzed with the Novel software (Novel gmbh, Munich, Germany). Intraclass correlation coefficient (ICC[3,1]) was used to test the reliability of the dynamic foot-pressure parameters. Descriptive statistics was used to describe the foot-pressure loading patterns. Chi-square test was used to test the distribution of COFP-on and off locations. One-way analysis of variance was used to test the differences in the dynamic foot-pressure parameters of the whole foot across the affected lower extremity, unaffected lower extremity, and healthy lower extremity. Two-way repeated measures of analysis of variance was used to test the differences in the dynamic foot-pressure parameters across three specific foot areas among the unaffected lower extremity, affected lower extremity, & healthy lower extremity.
Results: For both lower extremities of stroke patients, the loading time, average force, impulse, excursion of COFP, average speed of COFP, velocity of COFP in the anterior-posterior direction, and the anterior-posterior displacement of COFP of the affected extremities of stroke patients were all significantly reliable (ICC = 0.532 ~ 0.988, p < 0.05), except for the anterior-posterior displacement of COFP of the unaffected extremities (ICC = 0.461, p = 0.122). For healthy adults, the predominant foot-pressure loading patterns of the whole foot, heel, midfoot, and forefoot areas were the twin-peak pattern (77.6 %), smooth-single-peak pattern (86.0 %), smooth-flattened pattern (77.4 %), and smooth-single-peak pattern (62.5 %) respectively. For the unaffected extremity of stroke patients, the predominant foot-pressure loading patterns of the whole foot, heel, midfoot, and forefoot areas were the plateau-multipeak pattern (70.9 %), plateau-multipeak pattern (53.4 %), unsmooth-flattened pattern (83.3 %), and unsmooth-single-peak pattern (65.8 %) respectively. For the affected extremity of stroke patients, the predominant foot-pressure loading patterns of the whole foot, heel, and midfoot were the plateau-multipeak pattern (63.5 %), plateau-multipeak pattern (31.8 %), and unsmooth-flattened pattern (77.7 %) respectively. For the affected extremity of stroke patients, the primary foot-pressure loading patterns were the unsmooth-single-peak pattern (31.8 %) and plateau-multipeak pattern (24.9 %). Distribution of the COFP-on location was significantly different among healthy adults, affected extremity, and unaffected extremity (p < 0.017). For healthy adults, the COFP-on location was primarily in the heel area (96.5 %) . For the unaffected extremity of stroke patients, the COFP-on location was in the forefoot area (3.4 %) and midfoot area (0.4 %) in few trials. For the affected extremity of stroke patients, the COFP-on location was in the forefoot area (8.5 %) and midfoot area (15.8 %) in some trials. For the whole foot, the loading time, impulse, and excursion of COFP of the unaffected extremity in stroke patients were significantly greater than those of healthy adults (p < 0.017). The average force of the unaffected extremity of stroke patients was significantly greater than that of the affected extremity of the stroke patients (p < 0.017). The velocity of COFP in the anterior-posterior direction of the affected extremity of stroke patients was significantly greater than that of healthy adults (p < 0.017). There was no significant interaction between group and area factors for loading time, average force, and impulse (p = 0.484; p = 0.130; p = 0.140). However, the area effect showed that the loading time, average force, and impulse in the heel and forefoot areas were significantly greater than those in the midfoot area (p < 0.017). The group effect showed that the loading time and impulse of the unaffected extremity in all three foot areas were significantly greater than those of healthy adults (p < 0.017). The impulse of the unaffected extremity in these three areas were also significantly greater than those of the affected (p < 0.017).
Conclusion:All dynamic foot-pressure parameters, except the anterior-posterior displacement of COFP of the unaffected extremity of stroke patients, were significantly reliable. This result demonstrated good reliability of measuring the dynamic foot-pressure parameters using the in-shoe foot pressure measurement system in stroke patients during comfortable speed walking. Foot-pressure loading patterns can be used to evaluate the weight bearing ability of the lower extremity in stroke patients. The foot-pressure loading patterns of both lower extremities were quite different from those of healthy adults. For the unaffected extremity of stroke patients, the foot-pressure loading pattern in the heel areas was mostly affected, which showed no single-peak like plateau-multipeak patterns. For the affected extremity of stroke patients, the foot-pressure loading pattern in heel and forefoot areas were affected mostly, which showed various different patterns and lacked the predominant pattern. The distribution of COFP-on location of the unaffected and affected extremities were both significantly different form those of healthy adults. When assessing the weight bearing ability of the lower extremities of stroke patients, the dynamic foot-pressure loading patterns & parameters can be used to evaluate the gait deficits in stroke patients.

目錄
目錄…………………………………………………………………………………IX
表目錄……………………………………………………………………………...XII
圖目錄……………………………………………………………………………..XIII
第一章、 前言………………………………………………………………………1
第一節、 研究背景…………………………………………………………...1
第二節、 研究目的…………………………………………………………...3
第三節、 研究問題與假說…………………………………………………...4
第四節、 名詞及變項定義…………………………………………………...6
第五節、 研究的重要性……………………………………………………...9
第二章、 文獻探討………………………………………………………………..10
第一節、 步行中下肢承重的測量方法與其信效度……………………….11
第二節、 健康成人之動態足壓承重型態與相關參數…………………….21
第三節、 影響動態足壓承重型態與相關參數…………………………….25
第四節、 中風病患之動態足底、下肢承重型態與參數………………….34
第五節、 文獻探討總結…………………………………………………….43
第三章、 研究方法………………………………………………………………..45
第一節、 受試者…………………………………………………………….45
第二節、 測量工具………………………………………………………….46
第三節、 測試步驟………………………………………………………….49
第四節、 資料與統計分析………………………………………………….50
第四章、 結果……………………………………………………………………..56
第一節、 受試者基本資料………………………………………………….56
第二節、 中風病患之健、患側下肢之動態足壓相關參數重複測試信度結果………………………………………………………………….58
第三節、 中風病患與健康人受試者整體足底區域之足壓相關參數…………………………………………………………………59
第四節、 中風病患與健康受試者整體足底區域之足壓相關參數…………………………………………………………………65
第五節、 中風病患與健康受試者足底分區之足壓相關參數……………66
第五章、 討論…………………………………………………………………….69
第一節、 中風病患之足壓相關參數重複測試信度………………………69
第二節、 足壓承重型態與足壓中心型式…………………………………72
第三節、 中風病患健、患側與健康人分別於整底足底區域及足底分區之足壓相關參數之比較…………………………………………… …79
第四節、 研究限制……………………………………………………… …86
第五節、 臨床應用…………………………………………………… ……87
第六節、 未來研究方向……………………………………………… ……89
第七節、 結論………………………………………………………………89
參考文獻…………………………………………………………………………...92
附錄一、受試者同意書…………………………………………………………..125
附錄二、健康人受試者基本資料………………………………………………..129
附錄三、下肢關節活動度與肌力測試量表……………………………...……...131
附錄四、中文版伯格式平衡量表………………………………………...……...132
附錄五、中風受試者基本資料………………………………………………..…137
附錄六、傅格-梅爾評估量表……………………………………….…………....138
附錄七、修正版阿修伍爾斯氏痙攣量表…………………………….….……....140
附錄八、所有受試者之最低閾值設定……………………...…………....……...141
附錄九、足底分區圖…………………………………………………….……….149
表目錄
表1. 受試者人口學特徵與臨床測試結果………………………………………100
表2. 慢性期中風病患足壓相關參數重複測試信度……………………………101
表3. 中風病患之整體足底區域與足底分區之足壓承重型態出現頻率………102
表4. 健康人之足壓承重型態……………………………………………………103
表5. 中風病患健側下肢之足壓承重型態………………………………………104
表6. 中風病患患側下肢之足壓承重型態………………………………………105
表7. 中風病患與健康成人之足壓相關參數……………………………………106
表8. 中風病患健側、患側與健康人整體足底區域之族壓相關參數值之單因子變異數分析結果……………………………………………………………………..107
表9. 中風病患健側、患側與健康人足底分區之承重時間雙維單因子變異數分析結果………………………………………………………………………………..108
表10. 中風病患健側、患側與健康人足底分區之平均受力雙維單因子變異數分析結果………………………………………………………………………………..109
表11. 中風病患健側、患側與健康人足底分區之衝量雙維單因子變異數分析結果………………………………………………………………………………..…110
圖目錄
圖1. 健康人於整體足底區域之足壓承重型態…………………………………111
圖2. 健康人於腳跟區域之足壓承重型態………………………………………112
圖3. 健康人於腳中段區域之足壓承重型態……………………………………113
圖4. 健康人於腳前段區域之足壓承重型態……………………………………114
圖5. 中風病於患整體足底區域之足壓承重型態………………………………115
圖6. 中風病患於腳跟區域之足壓承重型態……………………………………116
圖7. 中風病患於腳中段區域之足壓承重型態…………………………………117
圖8. 中風病患於腳前段區域之足壓承重型態…………………………………118
圖9. 健康人之足壓中心起點位置分佈…………………………………………119
圖10. 中風健側之足壓中心起點位置分佈……………………………...……...120
圖11. 中風患側之足壓中心起點位置分佈……………………………………..121
圖12. 健康人之足壓中心終點位置分佈………………………………………..122
圖13. 中風健側之足壓中心終點位置分佈……………………………………..123
圖14. 中風患側之足壓中心終點位置分佈…………………………………......124

1. Ahroni, J. H., Boyko, E. J., & Forsberg, R. (1998). Reliability of F-scan in-shoe measurements of plantar pressure. Foot and Ankle International, 19(10), 668-673.
2. Alexander, I. J., Chao, E. Y. S., & Johnson, K. A. (1990). The assessment of dynamic foot-to-ground contact forces and plantar pressure distribution: A review of the evolution of current techniques and clinical applications. Foot and Ankle , 11(3), 152-167.
3. Andriacchi, T. P., Ogle, J. A., & Galante, J. O. (1977). Walking speed as a basis for normal and abnormall gait measurement. Journal of Biomechanics, 10, 261-268.
4. Barnett, S., Cunningham, J. L., & West, S. (2000). A comparison of vertical force and temporal parameters produced by an in-shoe pressure measuring system and a force platform. Clinical Biomechanics, 15, 781-785.
5. Becker, H. P., Rosenbaum, D., Zeithammel, G., Gerngross, H., & Claes, L. (1994). Gait pattern analysis after ankle ligmnent reconstruction. Foot and Ankle International, 15(9), 477-482.
6. Berg, K. O., Maki, B. E., Williams, J. I., Holliday, P. J., & Wood-Dauphinee, S. L. (1992). Clinical and laboratory measures of postural balance in an elderly population. Archives of Physical Medicine and Rehabilitation, 73, 1073-1080.
7. Berg, K., Wood- Dauphinee, S., Williams, J., & Gayton, D. (1989). Measuring balance in the elderly: preliminary development of an instrument. Physiotherapy Canada, 41, 304.
7. Berg, K. O., Wood-Dauphinee, S. L., & Williams, J. I. (1995). The balance scale: Reliability assessment with elderly residents and patients with an acute stroke. Scandinavian Journal of Rehabilitation Medicine, 27, 27-36.
8. Bohannon, R. W. (1997). Comfortable and maximum walking speed of adults aged 20-79 years: Reference values and determinants. Age and Ageing , 26, 15-19.
9. Bohannon, R. W. (1992). Walking after stroke: comfortable versus maximum safe speed. International Journal of Rehabilitation Research , 15, 246-248.
10. Bohannon, R. W., Andrews, A. W., & Thomas, M. W. (1996). Walking speed: Reference values and correlates for older adults. Journal of Orthopedic and Sports Physical Therapy, 24(2), 86-90.
11. Brandstater, M. E., de Bruin, H., Gowland, C., & Clark, B. M. (1983). Hemiplegia Gait: Analysis of temporal variables . Archives of Physical Medicine and Rehabilitation, 64, 583-587.
12. Bryant, A. R. (2000). Normal values of plantar pressure measurements determined using the EMED-SF system. Journal of the American Podiatric Medical Association, 90(6), 295-299.
13. Carlsoo, S., Dahllof, A. G., & Holm, J. (1974). Kinetic analysis of the gait in patients with hemiparesis and in patients with intermittent claudication. Scandinavian Journal of Rehabilitation Medicine, 6, 166-179.
14. Cavanagh, P. R., & Ae, M. (1980). A technique for the display of pressure distributions beneath the foot. Journal of Biomechanics, 13, 69-75.
15. Chen, C. L., Chen, H. C., Wong, M. K., & Tang, F. T. (2001). Temporal stride and force analysis of cane-assisted gait in people with hemiplegic stroke. Archives of Physical Medicine and Rehabilitation, 81, 43-48.
16. Chesnin, K. J., Selby-Silverstein, L., & Besser, M. P. (2000). Comparison of an in-shoe pressure measurement device to a force plate: Concurrent validity of center of pressure measurements. 12, 128-133.
17. Claeys, R. (1983). The analysis of ground reaction forces in pathological gait secondary to disorders of the foot. International Orthopaedics(SICOT) , 7, 113-119.
18. Cornwall, M. W., & McPoil, T. G. (2000). Velociity of the center of pressure during walking. Journal of the American Podiatric Medical Association, 90(7), 334-338.
19. Dettmann, M. A., Linder, M. T., & Sepic, S. B. (1987). Relationships among walking performance, postural stability, and functional assessments of the hemiplegic patient. American Journal of Physical Medicine, 66(2), 77-90.
20. Dickstein, R., Abulaffio, N., & Pillar, T. (1993). Vertical force loaded on walking canes in hemiparetic patients. Gait & Posture , 1, 113-118.
21. Domholdt, E. (2000). Physical Therapy Research: Principles and Applications. Philadephia: W.B. Saunders Company.
22. Ducan, P. W., Prost, M., & Nelson, S. G. (1983). Reliability of the Fugl-Meyer assessment of sesorimotor recovery following cerebrovascular accident. Physical Therapy, 63(10), 1606-1610.
23. Ely, D. D., & Smidt, G. L. (1977). Effect of cane on variables of gait for patients with hip disorders. Physical Therapy, 57, 507-512.
24. Fleiss, J. L. (1986). The Design and Analysis of Clinical Experiments. New York: John Wiley & Sons, Inc.
25. Fugl-Meyer, A. R., Jaasko, L., Leyman, I., Olsson, S., & Steglind, S. (1975). The post-stroke hemiplagic patient I. A method for evaluation of physical performance. Scandinavian Journal of Rehabilitation Medicine, 7, 13-31.
26. Giacomozzi, C., Macellari, V., Leardini, A., & Benedetti, M. G. (2000). Integrated pressure-force-kinematics measuring system for the characterisation of plantar foot loading during locomotion. Medical &Biological Engineering & Computing, 38, 156-163.
27. Grundy, M., Tosh, P. A., McLeish, R. D., & Smidt, L. (1975). An investigation of the centres of pressure under the foot while walking. The Journal of Bone and Joint Surgery, 57B(1), 98-103.
28. Han, T. R., Paik, N. J., & Im, M. S. (1999). Quantification of the path of center of pressure ( COP ) using an F-scan in-shoe transducer. Gait & Posture , 10, 248-254.
29. Henning, E. M., & Rosenbaum, D. (1991). Pressure distribution patterns under the feet of children in comparision with adults. Foot and Ankle , 11(5), 306-311.
30. Hesse, S., Luecke, D., Jahnke, M. T., & Mauritz, K. H. (1996). Gait function in spastic hemiparetic patients walking barefoot, with firm shoes, and with ankle-foot orthosis. International Journal of Rehabilitation Research , 19, 133-141.
31. Hesse, S. A., Jahnke, M. T., Bertelt, C. M., Schreiner, C., Lucke, D., & Mauritz, K. H. (1994). Gait outcome in ambulatory hemiparetic patients after a 4-week comprehensive rehabilitation program and prognostic factors. Stroke, 25, 1999-2004.
32. Holden, M. K., Gill, K. M., & Magliozzi, M. R. (1986). Gait assessment for neurologically impaired patients : Standards for outcome assessment. Physical Therapy, 66, 1530-1538.
33. Holden, M. K., Gill, K. M., Magliozzi, M. R., Nathan, J., & Piehl-Baker, L. (1984). Clinical gait assessment in the neurologically impaired: Reliability and meaningfulness. Physical Therapy, 64, 35-40.
34. Hughes, J., Pratt, L., Linge, K., Clark, P., & Kleneerman, L. (1991). Reliability of pressure measurements: the EMED F system. Clinical Biomechanics, 6, 14-18.
35. Hutton, W. C., & Dhanendran, M. (1981). The mechanics of normal and hallux valgus feet- A quantitative study . Clinical Orthopaedics and Related Research, (157), 7-13.
36. Jacobs, N. A., Skorecki, J., & Charnley, J. (1972). Analysis of the vertical component of force in normal and pathological gait. Journal of Biomechanics, 5, 11-34.
37. Jahnke, M. T., Hesse, S., Schreiner, C., & Mauritz, K. H. (1995). Dependences of ground reaction force parameters on habitual walking speed in hemiparetic subjects. Gait & Posture , 3(1), 3-12.
38. Gregson, J. M., Leathley, M., Moore, P., Sharma, A. K., Smith, T. L., & Watkins, C. L. (1999). Reliability of the Tone Assessment Scale and the modified Ashorth Scale as clinical tools for assessing poststroke spasticity. Archives of Physical Medicine and Rehabilitation,80, 1013-1016.
38. Jebsen, R. H. (1967). Use and abuse of ambulation aids. JAMA, 199(1), 63-68.
39. Jeka, J. J. (1997). Light touch contact as a balance aid. Physical Therapy, 77, 476-487.
40. Jorgensen, H. S., Nakayama, H., Raaschou, H. O., & Olsen, T. S. (1995). Recovery of walking function in stroke patients: The Copenhagen stroke study. Archives of Physical Medicine and Rehabilitation, 76, 27-32.
41. Jorgensen, H. S., Nakayama, H., Raaschou, H. O., & Vive-Larsen, J. (1995). Outcome and time course of recovery in stroke. Part I: Outcome. The Copenhagen stroke study. Archives of Physical Medicine and Rehabilitation, 76, 399-405.
42. Joyce, B. M., & Kirby, R. L. (1991). Canes, crutches and walkers . AFP, 43, 535-542.
43. Karlsson, A., & Frykberg, G. (2000). Correlations between force plate measures for assessment of balance. Clinical Biomechanics, 15, 365-369.
44. Katoh, Y., Chao, E. Y. S., Laughman, R. K., Schneider, E., & Morrey, B. F. (1983). Biomechanical analysis of foot function during gait and clinical applications. Clinical Orthopaedics and Related Research, (177), 23-33.
45. Kernozek, T. W., & LaMott, E. E. (1995). Comparisons of plantar pressures between the elderly and young adults. Gait & Posture , 3, 143-148.
46. Kernozek, T. W., LaMott, E. E., & Dancisak, M. J. (1996). Reliability of an in-shoe pressure measurement system during treadmill walking. Foot and Ankle International, 17(4), 204-209.
47. Kernozek, T. W., & Zimmer, K. A. (2000). Reliability and running speed effects of in-shoe loading measurements during slow treadmill running. Foot and Ankle International, 21(9), 749-752.
48. Koozekanani, S. H., Balmaseda, M. T., Fatehi, M. T., & Lowney, E. D. (1987). Ground reaction forces during ambulation in Parkinsonnism: Pilot study. Archives of Physical Medicine and Rehabilitation, 68, 28-30.
49. Leiper, C. I., & Craik, R. L. (1991). Relationships between physical activity and temporal-distance characteristics of walking in elderly women. Physical Therapy, 71, 791-803.
50. Meyring, S., Diehl, R. R., Milani, T. L., Hennig, E. M., & Berlit, P. (1997). Dynemic plantar pressure distribution measurements in hemiparetic patients. Clinical Biomechanics, 12(1), 60-65.
51. Milani, T. L., Hennig, E. M., Meyering, S., Diehl, R. R., & Berlit, P. (1994). Foot pressure patterns of patients with neuromotor disorders. Gait & Posture , 2(4), 246-247.
52. Miyazaki, S., & Iwakura, H. (1978). Foot-force measuring device for clinical assessment of pathological gait. Medical & Biological Engineering & Computing, 16, 429-436.
53. Morita, S., Yamamoto, H., & Furuya, K. (1995). Gait analysis of hemiplegic patients by measurement of ground reaction force. Scand J Rehab Med, 27, 37-42.
54. Mueller, K., Cornwall, M., McPoil, T., Mueller, D., & Barnwell, J. (1991). Effect of a tone-inhibiting dynamic ankle-foot orthosis on the foot-loading pattern of a hemiplegic adult: A preliminary study. Journal of Prosthetics and Orthotics, 4(2), 86-92.
55. Murray, M. P., Seireg, A. H., & Scholz, R. C. (1969). A survey of the time, magnitude and orientation of forces applied to walking sticks by disabled men. American Journal of Physical Medicine, 48, 1-13.
56. Nadeau, S., Arsenault, A. B., Gravel, D., & Bourbinnais, D. (1999). Analysis of the clinical factors determining natural and maximal gait speeds in adults with a stroke. American Journal of Physical Medicine and Rehabilitation, 78(2), 123-130.
57. National Center for Health Statistics, U. S. A., & 中華民國醫院協會病歷委員會. (1998). ICD-9-CM 中英對照. 台北市: 中華民國醫院協會.
58. Nieuwboer, A., De Weerdt, W., Dom, R., Peeraer, L., Lesaffre, E., Hilde, F., & Baunach, B. (1999). Plantar force distribution in Parkinsonian gait: A comparison between patients and age-matched control subjects. Scandinavian Journal of Rehabilitation Medicine, 31, 185-192.
59. Nigg, B. M., & Herzog, W. (1999). Biomechanics of the Musculo-Skeletal System. England: John Wiley & Sons.
60. Olney, S. J., Griffin, M. P., & McBride, I. D. (1994). Temporal, kinematic, and kinetic variables related to gait speed in subjects with hemiplegia: a regression approach. Physical Therapy, 74(9), 872-885.
61. Olney, S. J., & Richards, C. L. (1996). Hemiparetic gait following stroke. Part I: Characteristics. Gait & Posture , 4, 136-148.
62. Opila, K. A., Nicol, A. C., & Paul, J. P. (1987). Forces and impulses during aided gait. Archives of Physical Medicine and Rehabilitation, 68, 715-722.
63. Orlin, M. N., & McPoil, T. G. (2000). Plantar pressure assessment. Physical Therapy, 80, 399-409.
64. Otsuki, T., Nawata, K., & Okuno, M. (1999). Quantitative evaluation of gait pattern in patients with osteoarthrosis of the knee before and after total knee arthroplasty. Gait analysis using a pressure measuring system. Journal of Orthopaedic Science, 4, 99-105.
65. Perry, J. (1992). Gait Analysis: Normal and Pathological Function. New York: Benson, H. C.
66. Richards, C. L., Malouin, F., Dumas, F., & Tardif, D. (1995). Gait velocity as an outcome measure of locomotor recovery after stroke. In R. L. Craik, & C. A. Oatis Gait analysis: Theory and application (, Chap. 356-364, ). St. Louis Mosky.
67. Rosenbaum, D., Hautmann, S., Gold, M., & Claes, L. (1994). Effects of walking speed on plantar pressure patterns and hindfoot angular motion. Gait & Posture , 2(3), 191-197.
68. Soames, R. W. (1985). Foot pressure patterns during gait. J. Biomed Eng., 7, 120-126.
69. Stott, J. R. R., Hutton, W. C., & Strokes, I. A. F. (1973). Forces under the foot. The Journal of Bone and Joint Surgery, 55B(2), 335-344.
70. Tsubodyama, T., Windhager, R., Bochdansky, T., Yamamuro, T., & Kotz, R. (1994). Gait after knee arthroplasty for femoral tumor : Foot pressure patterns recorded in 20 patients. Acta Orthop Scand, 65(1), 51-54.
71. Tsvetkova, T., Lebedev, V., & Kazimirsky, V. (1997). Velocity of the COP as reliable parameter for early diagnosis of coxarthrosis. Journal of Biomechanics, 12(3), S8-S9.
72. Turnbull, G. I., Charteris, J., & Wall, J. C. (1995). A comparison of the range of walking speeds between normal and hemiplegic subjects. Scandinavian Journal of Rehabilitation Medicine, 27, 175-182.
73. Wearing, S. C., Urry, S., Smeathers, J. E., & Battistutta, D. (1999). A comparison of gait initiation and terminaiton methods for obtaining plantar foot pressures. Gait & Posture , 10, 255-263.
74. Winstein, C. J., Gardner, E. R., McNeal, D. R., Barto, P. S., & Nicholson, D. E. (1989). Standing balance training: Effect on balance and locomotion in hemiparetic adults. Archives of Physical Medicine and Rehabilitation, 70, 755-762.
75. 羅, & 湯. (2000). 簡介傅格-梅爾評估量表及其在中風復健之應用. 物理治療, 25(4), 239-249.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top