跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/09 02:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李仲民
研究生(外文):Chung-Min Li
論文名稱:離子高分子金屬化合物應用於光學變焦模組及其可靠性測試
論文名稱(外文):Focus tunable mirrors made by ionic polymer-metal composite and its reliability test
指導教授:蘇國棟
口試委員:蔡永傑林晃巖
口試日期:2014-07-28
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:103
語文別:英文
論文頁數:73
中文關鍵詞:離子性高分子金屬複合材料聚二甲基矽氧烷可形變面鏡
外文關鍵詞:ionic polymer metal composite (IPMC)polydimethyl siloxane (PDMS)deformable mirror
相關次數:
  • 被引用被引用:0
  • 點閱點閱:103
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
一般傳統上的自動變焦系統是由一系列的透鏡組所組成,再藉由馬達或電磁驅動的方式來移動透鏡的位置達到變焦的效果,然而這種方式需要較大的空間,且重量也相對較重,不太適合現在微型鏡頭的趨勢,因此,我們設計了一款面鏡反射式的變焦系統,反射式的變焦系統除了能夠利用折疊光路來使空間的運用更有效率外,還可以有效降低色散的現象,對於現在的微型鏡頭來說,此設計可以更貼近輕薄短小。
在這裡,我們使用一種離子性高分子金屬複合材料(IPMC)來製作可形變的面鏡,藉由改變面鏡的曲率來達到變焦的效果,利用遮罩的方式,可以定義出任意形狀的可形變面鏡,而因為這種材料的特性,我們可以用較低的電壓來達到較高的形變量,約3伏特就可以驅動。此外,為了使IPMC 的表面能夠當作光學反射面,我們使用聚二甲基矽氧烷(PDMS)來改善IPMC表面的粗糙度,使得粗糙度降低至18 nm 的程度,最後,我們把製作完成的可形變面鏡放入我們設計好的光學變焦模組裡面測試,分析所得的影像。


In order to meet modern requirement, electronic products are made smaller and thinner. We used deformable mirrors (DMs) in optical systems that can make camera modules thinner and lighter in electronic products. An Ionic-Polymer Metal Composite (IPMC) plays the critical role in our design of deformable mirrors. It has good bending feature and can be driven by low voltage (usually less than 5 volts). Other technologies such as liquid lenses, MEMS deformable mirrors, and liquid crystal lens, all need higher voltage to reach similar optical power of IPMC. After fabrication of IPMC deformable mirrors, we used PDMS on one surface to improve the surface roughness before reflective metal is deposited. Key characteristics of IPMC deformable mirror are demonstrated in the paper. By coating a silver layer on the smoothed IPMC surface, the reflection is up to 90%. From simulation results, the zoom ratio of this module can be expected 1.8 times.
Experimentally, the deformable mirror can be changed from flat to 65 diopters (m-1) by only 3 volts. In this paper, we demonstrated a reflective optical zoom module with three mirrors and two deformable mirrors.


誌謝 ii
中文摘要 iii
ABSTRACT iv
CONTENTS v
LIST OF FIGURES vii
LIST OF TABLES xi
Chapter 1. Introduction 1
1.1 Ionic polymer metallic composite 3
1.2 Deformable mirror 8
1.3 Liquid deformable mirror 10
1.4 MEMS deformable mirror 13
1.5 Design the IPMC deformable mirror 15
1.6 Design concept 17
Chapter 2. Fabrication 19
2.1 IPMC fabrication process 20
2.2 Surface improved patterned IPMC deformable mirror 26
Chapter 3. Simulation Results 29
3.1 Optical zoom system design by deformable mirror 29
3.2 Reflective optical zoom system layout 30
3.3 Simulation result 32
3.4 Aberration 37
3.5 Simulation model 39
Chapter 4. Experiment Result 48
4.1 Surface resistance 48
4.2 Surface roughness 49
4.3 The measurement of reflectivity 52
4.4 Center displacement results 56
4.5 Response time 62
4.6 Optical zoom module 64
4.7 Reliability test 66
Chapter 5. Conclusions 68
Chapter 6. References 69


[1]Nemat-Nasser, S., & Thomas, C. W. (2001). Ionomeric Polymer-Metal Composites in EAP Actuators and Artificial Muscles.

[2]Shahinpoor, M., Bar-Cohen, Y., Simpson, J. O., & Smith, J. (1998). Ionic polymer-metal composites (IPMCs) as biomimetic sensors, actuators and artificial muscles-a review. Smart materials and structures, 7(6), R15.

[3]Anton, M., Chen, Z., Kruusmaa, M., & Tan, X. (2009, October). Analytical and computational modeling of robotic fish propelled by soft actuation material-based active joints. In Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International Conference on (pp. 2126-2131). IEEE.

[4]Abdelnour, K., Stinchcombe, A., Porfiri, M., Zhang, J., & Childress, S. (2012). Wireless powering of ionic polymer metal composites toward hovering microswimmers. Mechatronics, IEEE/ASME Transactions on, 17(5), 924-935.

[5]Huang, Y. H., Wei, H. C., Hsu, W. Y., Cheng, Y. C., & Su, G. D. J. (2014). Optical zoom camera module using two poly-dimethylsiloxane deformable mirrors. Applied optics, 53(29), H248-H256.

[6]Lee, S. H., Kim, C. J., Hwang, H. W., Kim, S. J., Yang, H. S., Park, N. C., ... & Choi, N. J. (2009, March). Performance Enhancement of IPMC by anisotropic Plasma etching process. In SPIE Smart Structures and Materials+ Nondestructive Evaluation and Health Monitoring (pp. 728722-728722). International Society for Optics and Photonics.

[7]Shahinpoor, M., & Kim, K. J. (2000, June). Effects of counter-ions on the performance of IPMCs. In SPIE''s 7th Annual International Symposium on Smart Structures and Materials (pp. 110-120). International Society for Optics and Photonics.

[8]Ivy, W. H. C. (2010). Study on Fabrication and Performance of IPMCS (ionic polymer-metal composites). The Hongkong Polytechnic University.

[9]Chen, Z., & Tan, X. (2010). Monolithic fabrication of ionic polymer–metal composite actuators capable of complex deformation. Sensors and Actuators A: Physical, 157(2), 246-257..

[10] Tsai, S. A., Wei, H. C., & Su, G. D. J. (2012). Polydimethylsiloxane coating on an ionic polymer metallic composite for a tunable focusing mirror. Applied optics, 51(35), 8315-8323.

[11] Kanno, R., Tadokoro, S., Takamori, T., Hattori, M., & Oguro, K. (1996, April). Linear approximate dynamic model of ICPF (ionic conducting polymer gel film) actuator. In Robotics and Automation, 1996. Proceedings., 1996 IEEE International Conference on (Vol. 1, pp. 219-225). IEEE.

[12] Kanno, R., Tadokoro, S., Takamori, T., & Oguro, K. (1996, October). 3-Dimensional dynamic model of ionic conducting polymer gel film (ICPF) actuator. In Systems, Man, and Cybernetics, 1996., IEEE International Conference on (Vol. 3, pp. 2179-2184). IEEE.

[13] Lughmani, W. A., Jho, J. Y., Lee, J. Y., & Rhee, K. (2009). Modeling of bending behavior of IPMC beams using concentrated ion boundary layer. International Journal of Precision Engineering and Manufacturing, 10(5), 131-139.

[14] Shahinpoor, M. (1993, May). Microelectro-mechanics of ionic polymeric gels as artificial muscles for robotic applications. In Robotics and Automation, 1993. Proceedings., 1993 IEEE International Conference on (pp. 380-385). IEEE.

[15] Nemat-Nasser, S., & Li, J. Y. (2000). Electromechanical response of ionic polymer-metal composites. Journal of Applied Physics, 87(7), 3321-3331.

[16] Branco, P. C., & Dente, J. A. (2006). Derivation of a continuum model and its electric equivalent-circuit representation for ionic polymer–metal composite (IPMC) electromechanics. Smart Materials and Structures, 15(2), 378..

[17] Ventsel, E., & Krauthammer, T. (2001). Thin plates and shells: theory: analysis, and applications. CRC press.

[18] Berge, B. (2005, July). Liquid lens technology: principle of electrowetting based lenses and applications to imaging. In Micro Electro Mechanical Systems, 2005. MEMS 2005. 18th IEEE International Conference on (pp. 227-230). IEEE.

[19] Hsieh, H. T., Wei, H. C., Lin, M. H., Hsu, W. Y., Cheng, Y. C., & Su, G. D. J. (2010). Thin autofocus camera module by a large-stroke micromachined deformable mirror. Optics express, 18(11), 11097-11104.

[20] Kanno, I., Kunisawa, T., Suzuki, T., & Kotera, H. (2007). Development of deformable mirror composed of piezoelectric thin films for adaptive optics. Selected Topics in Quantum Electronics, IEEE Journal of, 13(2), 155-161.
[21] Yeh, C. C., & Shih, W. P. (2010). Effects of water content on the actuation performance of ionic polymer–metal composites. Smart Materials and Structures, 19(12), 124007.
[22] Barramba, J., Silva, J., & Branco, P. C. (2007). Evaluation of dielectric gel coating for encapsulation of ionic polymer–metal composite (IPMC) actuators. Sensors and Actuators A: Physical, 140(2), 232-238.
[23] Lopes, B., & Costa Branco, P. J. (2009, November). Ionic polymer metal-composite (IPMC) actuators: Augmentation of their actuation force capability. In Industrial Electronics, 2009. IECON''09. 35th Annual Conference of IEEE (pp. 1180-1184). IEEE.
[24] Wei, H. C., & Su, G. D. J. (2010, August). A low voltage deformable mirror using ionic-polymer metal composite. In SPIE Optical Engineering+ Applications (pp. 77880C-77880C). International Society for Optics and Photonics.
[25] Bar-Cohen, Y., & Zhang, Q. (2008). Electroactive polymer actuators and sensors. MRS bulletin, 33(03), 173-181.
[26] Bifano, T. G., Perreault, J. A., Bierden, P. A., & Dimas, C. E. (2002, November). Micromachined deformable mirrors for adaptive optics. In International Symposium on Optical Science and Technology (pp. 10-13). International Society for Optics and Photonics.
[27] Zhu, L., Sun, P. C., Bartsch, D. U., Freeman, W. R., & Fainman, Y. (1999). Adaptive control of a micromachined continuous-membrane deformable mirror for aberration compensation. Applied Optics, 38(1), 168-176.
[28] Sato, S. (1979). Liquid-crystal lens-cells with variable focal length. Japanese Journal of Applied Physics, 18(9), 1679.
[29] Ji, A. H., Park, H. C., Nguyen, Q. V., Lee, J. W., & Yoo, Y. T. (2009). Verification of beam models for ionic polymer-metal composite actuator. Journal of Bionic Engineering, 6(3), 232-238.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top