|
[1]Nemat-Nasser, S., & Thomas, C. W. (2001). Ionomeric Polymer-Metal Composites in EAP Actuators and Artificial Muscles.
[2]Shahinpoor, M., Bar-Cohen, Y., Simpson, J. O., & Smith, J. (1998). Ionic polymer-metal composites (IPMCs) as biomimetic sensors, actuators and artificial muscles-a review. Smart materials and structures, 7(6), R15.
[3]Anton, M., Chen, Z., Kruusmaa, M., & Tan, X. (2009, October). Analytical and computational modeling of robotic fish propelled by soft actuation material-based active joints. In Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International Conference on (pp. 2126-2131). IEEE.
[4]Abdelnour, K., Stinchcombe, A., Porfiri, M., Zhang, J., & Childress, S. (2012). Wireless powering of ionic polymer metal composites toward hovering microswimmers. Mechatronics, IEEE/ASME Transactions on, 17(5), 924-935.
[5]Huang, Y. H., Wei, H. C., Hsu, W. Y., Cheng, Y. C., & Su, G. D. J. (2014). Optical zoom camera module using two poly-dimethylsiloxane deformable mirrors. Applied optics, 53(29), H248-H256.
[6]Lee, S. H., Kim, C. J., Hwang, H. W., Kim, S. J., Yang, H. S., Park, N. C., ... & Choi, N. J. (2009, March). Performance Enhancement of IPMC by anisotropic Plasma etching process. In SPIE Smart Structures and Materials+ Nondestructive Evaluation and Health Monitoring (pp. 728722-728722). International Society for Optics and Photonics.
[7]Shahinpoor, M., & Kim, K. J. (2000, June). Effects of counter-ions on the performance of IPMCs. In SPIE''s 7th Annual International Symposium on Smart Structures and Materials (pp. 110-120). International Society for Optics and Photonics.
[8]Ivy, W. H. C. (2010). Study on Fabrication and Performance of IPMCS (ionic polymer-metal composites). The Hongkong Polytechnic University.
[9]Chen, Z., & Tan, X. (2010). Monolithic fabrication of ionic polymer–metal composite actuators capable of complex deformation. Sensors and Actuators A: Physical, 157(2), 246-257..
[10] Tsai, S. A., Wei, H. C., & Su, G. D. J. (2012). Polydimethylsiloxane coating on an ionic polymer metallic composite for a tunable focusing mirror. Applied optics, 51(35), 8315-8323.
[11] Kanno, R., Tadokoro, S., Takamori, T., Hattori, M., & Oguro, K. (1996, April). Linear approximate dynamic model of ICPF (ionic conducting polymer gel film) actuator. In Robotics and Automation, 1996. Proceedings., 1996 IEEE International Conference on (Vol. 1, pp. 219-225). IEEE.
[12] Kanno, R., Tadokoro, S., Takamori, T., & Oguro, K. (1996, October). 3-Dimensional dynamic model of ionic conducting polymer gel film (ICPF) actuator. In Systems, Man, and Cybernetics, 1996., IEEE International Conference on (Vol. 3, pp. 2179-2184). IEEE.
[13] Lughmani, W. A., Jho, J. Y., Lee, J. Y., & Rhee, K. (2009). Modeling of bending behavior of IPMC beams using concentrated ion boundary layer. International Journal of Precision Engineering and Manufacturing, 10(5), 131-139.
[14] Shahinpoor, M. (1993, May). Microelectro-mechanics of ionic polymeric gels as artificial muscles for robotic applications. In Robotics and Automation, 1993. Proceedings., 1993 IEEE International Conference on (pp. 380-385). IEEE.
[15] Nemat-Nasser, S., & Li, J. Y. (2000). Electromechanical response of ionic polymer-metal composites. Journal of Applied Physics, 87(7), 3321-3331.
[16] Branco, P. C., & Dente, J. A. (2006). Derivation of a continuum model and its electric equivalent-circuit representation for ionic polymer–metal composite (IPMC) electromechanics. Smart Materials and Structures, 15(2), 378..
[17] Ventsel, E., & Krauthammer, T. (2001). Thin plates and shells: theory: analysis, and applications. CRC press.
[18] Berge, B. (2005, July). Liquid lens technology: principle of electrowetting based lenses and applications to imaging. In Micro Electro Mechanical Systems, 2005. MEMS 2005. 18th IEEE International Conference on (pp. 227-230). IEEE.
[19] Hsieh, H. T., Wei, H. C., Lin, M. H., Hsu, W. Y., Cheng, Y. C., & Su, G. D. J. (2010). Thin autofocus camera module by a large-stroke micromachined deformable mirror. Optics express, 18(11), 11097-11104.
[20] Kanno, I., Kunisawa, T., Suzuki, T., & Kotera, H. (2007). Development of deformable mirror composed of piezoelectric thin films for adaptive optics. Selected Topics in Quantum Electronics, IEEE Journal of, 13(2), 155-161. [21] Yeh, C. C., & Shih, W. P. (2010). Effects of water content on the actuation performance of ionic polymer–metal composites. Smart Materials and Structures, 19(12), 124007. [22] Barramba, J., Silva, J., & Branco, P. C. (2007). Evaluation of dielectric gel coating for encapsulation of ionic polymer–metal composite (IPMC) actuators. Sensors and Actuators A: Physical, 140(2), 232-238. [23] Lopes, B., & Costa Branco, P. J. (2009, November). Ionic polymer metal-composite (IPMC) actuators: Augmentation of their actuation force capability. In Industrial Electronics, 2009. IECON''09. 35th Annual Conference of IEEE (pp. 1180-1184). IEEE. [24] Wei, H. C., & Su, G. D. J. (2010, August). A low voltage deformable mirror using ionic-polymer metal composite. In SPIE Optical Engineering+ Applications (pp. 77880C-77880C). International Society for Optics and Photonics. [25] Bar-Cohen, Y., & Zhang, Q. (2008). Electroactive polymer actuators and sensors. MRS bulletin, 33(03), 173-181. [26] Bifano, T. G., Perreault, J. A., Bierden, P. A., & Dimas, C. E. (2002, November). Micromachined deformable mirrors for adaptive optics. In International Symposium on Optical Science and Technology (pp. 10-13). International Society for Optics and Photonics. [27] Zhu, L., Sun, P. C., Bartsch, D. U., Freeman, W. R., & Fainman, Y. (1999). Adaptive control of a micromachined continuous-membrane deformable mirror for aberration compensation. Applied Optics, 38(1), 168-176. [28] Sato, S. (1979). Liquid-crystal lens-cells with variable focal length. Japanese Journal of Applied Physics, 18(9), 1679. [29] Ji, A. H., Park, H. C., Nguyen, Q. V., Lee, J. W., & Yoo, Y. T. (2009). Verification of beam models for ionic polymer-metal composite actuator. Journal of Bionic Engineering, 6(3), 232-238.
|