跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/11/20 19:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:盧智明
研究生(外文):Chih Ming Lu
論文名稱:6-取代吲哚[3,2-c]喹啉衍生物之合成及生物活性評估
論文名稱(外文):Synthesis and Biological Evaluation of 6-Substituted Indolo[3,2-c]quinoline Derivatives
指導教授:曾誠齊
指導教授(外文):Cherng-Chyi Tzeng
學位類別:博士
校院名稱:高雄醫學大學
系所名稱:藥學研究所
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2011
畢業學年度:100
語文別:中文
論文頁數:123
中文關鍵詞:
外文關鍵詞:indoloquinolineapoptosiscell cycle
相關次數:
  • 被引用被引用:0
  • 點閱點閱:273
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
吲哚喹啉四環系統顯示很多的生物活性是組成天然產物重要結構的一部分。例如cryptolepine (一種吲哚[3,2-b]喹啉衍生物)和isocryptolepine (一種吲哚[3,2-c]喹啉衍生物)是兩種從非洲植物Cryptolepis sanguinolenta 的根部所分離出的吲哚喹啉化
合物。從cryptolepine 體外和體內廣泛的生物活性研究,展現出它的抗瘧疾、抗菌、抗發炎和當作抗癌藥劑廣泛的應用。而同質異構物isocryptolepine (也被提到當作cryptosanguinolentine)較少被引起注意。因此,本論文敘述一些吲哚[3,2-c]喹啉(isocryptolepine)衍生物的合成與抗增生評估。結果顯示,三種癌細胞株:子宮頸癌
細胞(HeLa)、肺癌細胞(A549)和肝癌細胞(SKHep),易受影響的IC50 低於2.17 ?嵱,而前列腺癌細胞(PC-3)對於這些吲哚[3,2-c]喹啉有相當耐性。在這些化合物中,N,N-bis-[3-(11H-indolo[3,2-c]quinolin-6-yl)aminopropyl]amine hydrochloride (40)活性
最好,針對子宮頸癌細胞,肺癌細胞和前列腺癌細胞抑制50%的濃度分別為0.068、0.11、和0.08 ?嵱,也比對照組的doxorubicin 有更佳的活性。作用機轉研究指出,化合物40 誘導激活caspase-3,??-H2AX 磷酸化,poly(ADP-ribose) polymerase 的開裂和DNA 破碎。這些結果提供了DNA、topo I 和topoII 是吲哚[3,2-c]喹啉衍生物主要作用目標的證據,因而抑制增生和造成癌細胞的凋亡。

The tetracyclic indoloquinoline ring system constitutes an important structural moiety in
natural products exhibiting numerous biological activities. For example, cryptolepine (an
indolo[3,2-b]quinoline derivative) and isocryptolepine (an indolo[3,2-c]quinoline derivative)
are two indoloquinolines isolated from the roots of the african plant Cryptolepis sanguinolenta.
Extensive investigations on the in vitro and in vivo biological activities of cryptolepine
revealed its wide applications as anti-malarial, anti-microbial, anti-inflammatory, and
anticancer agents. The isomeric isocryptolepine (also referred to as cryptosanguinolentine),
however, attracted only limited attention. Therefore, this dissertation describes the synthesis
and antiproliferative evaluation of certain indolo[3,2-c]quinoline (isocryptolepine) derivatives.
Results indicated that three cancer cell lines, HeLa, A549, and SKHep, are very susceptible
with IC50 of less than 2.17  ?嵱 while PC-3 is relatively resistant to this group of
indolo[3,2-c]quinolines. Among them, N,N-bis-[3-(11H-indolo[3,2-c]quinolin-6-yl)
aminopropyl]amine hydrochloride (40) was the most active, with IC50 of 0.068, 0.11, and 0.08
?嵱 against the growth of HeLa, A549, and PC-3, respectively, which is more active than the
prevailing doxorubicin. Mechanism studies indicated compound 40 can induce caspase-3
activation, ??-H2AX phosphorylation, cleavage of poly(ADP-ribose)polymerase and DNA
fragmentation. These results provide evidence that DNA, topo I, and topo II are the primary
targets of indolo[3,2-c]quinoline derivatives and that consequently inhibits proliferation and
causes apoptosis in cancer cells.

Abstract ........................................................................................ 6
中文摘要 ....................................................................................... 7
壹、緒論 ....................................................................................... 8
貳、 研究背景及目的 ................................................................. 17
参、合成方法 .............................................................................. 25
一、吲哚[3,2-c]喹啉類之合成 ................................................................... 25
二、逆合成分析 ......................................................................................... 26
三、吲哚[3,2-c]喹啉類衍生物之合成 ....................................................... 26
肆、結果與討論 .......................................................................... 34
(一)體外抗癌活性測試 ............................................................................... 34
(二) DNA topoisomerases I 和II 抑制活性評估 ........................................ 42
(三) Hela cell 增生抑制作用和細胞群落產生評估 ................................... 43
(四) PC-3 cells 間接造成細胞凋亡途徑 .................................................... 45
(五) IQDMA 對K562 細胞G2/M phase arrest 作用機轉 .......................... 46
(六) IQDMA 對HL-60 細胞S-phase arrest 作用機轉 .............................. 51
伍、結論 ..................................................................................... 57
2
陸、合成實驗部分 ...................................................................... 58
一、溶劑 ..................................................................................................... 58
二、儀器 ..................................................................................................... 58
三、試藥 ..................................................................................................... 59
四、化合物製備 ......................................................................................... 63
柒、參考文獻 ............................................................................ 114
捌、論文著作 ............................................................................ 119
一、論文相關著作 ................................................................................... 119
二、參考論文 ........................................................................................... 119
三、研討會論文 ....................................................................................... 121
四、專利 ................................................................................................... 123

(1) Swanton, C. Cell-cycle targeted therapies. Lancet Oncol. 2004, 1, 27-36.
(2) Zhou, B. B.; Elledge, S. J. The DNA damage response: putting checkpoints in perspective. Nature 2000, 408, 433-439.
(3) Shapiro, G. I.; Harper, J. W. Anticancer drug targets: cell cycle and checkpoint
control. J. Clin. Invest. 1999, 104, 1645-1653.
(4) Laurence, H. H., DNA and its Assoicated Processies as Targets Cancer Therapy. Nat.
Rev. Cancer 2002, 2, 188-200.
(5) Jordan, M. A.; Thowar, D.; Wilson, L. Mechanism of inhibition of cell proliferation
by vinca alkaloids. Cancer Res. 1991, 51, 2212–2222.
(6) Seidman, R.; Gitelman, I.; Sagi, O.; Horwitz, S.B.; Wolfson, M. The role of ERK 1/2
and p38 MAP-kinase pathways in taxol-induced apoptosis in human ovarian
carcinoma cells. Exp. Cell Res. 2001, 268, 84-92.
(7) Braña, M. F.; Cacho, M.; Gradillas, A.; Pascual-Teresa, B. d.; Ramos, A.,
Intercalators as anticancer drugs. Curr. Pharm. Des. 2001, 7, 1745-1780.
(8) Pommier, Y.; Redon, C.; Rao, V. A.; Seiler, J. A; Sordet, O.; Takemura, H.; Antony,
S.; Meng, L. H.; Liao, Z. Y.; Kohlhagen, G.; Zhang, H. L.; Kohn, K. W. Repair of
and checkpoint response to topoisomerase I-mediated DNA damage. Mutation Res.
2003, 532, 173-203.
(9) Hande, K. R. Etoposide: four decades of development of topoisomerase II inhibitor.
Eur. J. Cancer 1998, 34, 1514-1521.
(10) Wang, J. C. DNA topoisomerases. Annu. Rev. Biochem. 1996, 65, 635-692.
(11) Taatjes, D. J.; Gaudiano, G.; Resing, K.; Koch, T. H., Redox pathway leading to the
alkylation of DNA by the anthracycline, antitumor drugs adriamycin and daunomycin.J. Med. Chem. 1997, 40, 1276-1286.
(12) Acton, E. M.; Narayanan, V. L.; Risbood, P. A.; Shoemaker, R. H.; Vistica, D. T.;
Boyd, M. R., Anticancer specificity of some ellipticinium salts against human brain
tumors in vitro. J. Med. Chem. 1994, 37, 2185-2189.
(13) Nagarajan, M.; Xiao, X.; Antony, S.; Kohlhagen, G.; Pommier, Y.; Cushman, M.,
Design, synthesis, and biological evaluation of indenoisoquinoline topoisomerase I
inhibitors featuring polyamine side chains on the lactam nitrogen. J. Med. Chem.
2003, 46, 5712-5724.
(14) Martínez, R.; García, L. C. The Search of DNA-intercalators as antitumoral drugs:
what it worked and what did not work. Curr. Med. Chem. 2005, 12, 127-151.
(15) Pousset, J.-L.; Martin, M.-T.; Jossang, A.; Bodo, B. Isocryptolepine from
Cryptolepis Sanguinolenta. Phytochemistry 1995, 39, 735-736.
(16) Lavrado, J.; Paulo, A.; Gut, J.; Rosenthal, P. J.; Moreira, R. Cryptolepine analogues
containing basic aminoalkyl side-chains at C-11: Synthesis, antiplasmodial activity,
and cytotoxicity. Bioorg. Med. Chem. Lett. 2008, 18, 1378-1381.
(17) Grellier, P.; Ramiaramanana, L.; Millerioux, V.; Deharo, E.; Schrevel, J.; Frappier,
F.; Trigalo, F.; Bodo, B.; Pousset, J.-L. Antimalarial activity of cryptolepine and
isocryptolepine, Alkaloids Isolated from Cryptolepis sanguinolenta. Phytother. Res.
1996, 10, 317-321.
(18) Cimanga, K.; De Bruyne, T.; Pieters, L.; Vlietinck, A. J.; Turger, C. A. In Vitro and
in Vivo Antiplasmodial Activity of Cryptolepine and Related Alkaloids from
Cryptolepis sanguinolenta. J. Nat. Prod. 1997, 60, 688-691.
(19) Onyeibor, O.; Croft, S. L.; Dodson, H. I.; Feiz-Haddad, M.; Kendrick, H.;
Millington, N. J.; Parapini, S.; Phillips, R. M.; Seville, S.; Shnyder, S. D.; Taramelli,
D.; Wright, C. W. Synthesis of Some Cryptolepine Analogues, Assessment of Their
Antimalarial and Cytotoxic Activities, and Consideration of Their Antimalarial Mode
of Action. J. Med. Chem. 2005, 48, 2701-2709.
(20) Wright, C. W.; Addae-Kyereme, J.; Breen, A. G.; Brown, J. E.; Cox, M. F.; Croft, S.
L.; Goekcek, Y.; Kendrick, H.; Phillips, R. M.; Pollet, P. L. Synthesis and evaluation
of cryptolepine analogues for their potential as new antimalarial agents. J. Med. Chem.
2001, 44, 3187-3194.
(21) Gibbons, S.; Fallah, F.; Wright, C. W. Cryptolepine hydrochloride: a potent
antimycobacterial alkaloid derived from Cryptolepis sanguinolenta. Phytother. Res.
2003, 17, 434-436.
(22) Mardenborough, L. G.; Zhu, X. Y.; Fan, P.; Jacob, M. R.; Khan, S. I.; Walker, L. A.;
Ablordeppey, S. Y. Identification of bis-quindolines as new antiinfective agents.
Bioorg. Med. Chem. 2005, 13, 3955-3963.
(23) Olajide, O. A.; Heiss, E. H.; Schachner, D.; Wright, C. W.; Vollmar, A. M.; Dirsch,
V. M. Synthetic cryptolepine inhibits DNA binding of NF- B. Bioorg. Med. Chem.
2007, 15, 43-49.
(24) Dassonneville, L.; Lansiaux, A.; Wattelet, A.; Wattez, N.; Mahieu, C.; Van Miert, S.;
Pieters, L.; Bailly, C. Cytotoxicity and cell cycle effects of the plant alkaloids
cryptolepine and neocryptolepine: relation to drug-induced apoptosis. Eur. J.
Pharmacol. 2000, 409, 9-18.
(25) Zhu, H.; Gooderham, N. Mechanisms of Induction of Cell Cycle Arrest and Cell
Death by Cryptolepine in Human Lung Adenocarcinoma A549 Cells. J. Toxicol. Sci.
2006, 91, 132-139.
(26) Seville, S.; Phillips, R. M.; Shnyder, S. D.; Wright, C. W. Synthesis of cryptolepine
analogues as potential bioreducible anticancer agents. Bioorg. Med. Chem. 2007, 15,
6353-6360.
(27) Matsui, T.-A.; Sowa, Y.; Murata, H.; Takagi, K.; Nakanishi, R.; Aoki, S.; Yoshikawa,
M.; Kobayashi, M.; Sakabe, T.; Kubo, T.; Sakai, T. The plant alkaloid cryptolepine
induces p21WAF1/CIP1 and cell cycle arrest in a human osteosarcoma cell line. Int. J.
Oncol. 2007, 31, 915-922.
(28) Agarwal, P. K.; Sawant, D.; Sharma, S.; Kundu, B. New Route to the Synthesis of
the Isocryptolepine Alkaloid and Its Related Skeletons Using a Modified
Pictet–Spengler Reaction. Eur. J. Org. Chem. 2009 (2), 292-303.
(29) Kumar, D.; Maruthi, K. N.; Rao, V. S. A Facile and Expeditious Synthesis of
Cryptosanguinolentines. Chem. Lett. 2009, 38, 156-157.
(30) Timari, G.; Soos, T.; Hajos, G. A Convenient Synthesis of Two New Indoloquinoline
Alkaloids. Synlett 1997, 9, 1067-1068.
(31) Miki, Y.; Kuromatsu, M.; Miyatake, H.; Hamamoto, H. Synthesis of
benzo-c-carboline alkaloid cryptosanginolentine by reaction of
indole-2,3-dicarboxylic anhydrides with anilines. Tetrahedron Lett. 2007, 48,
9093-9095.
(32) Jonckers, T. H. M.; Maes, B. U. W.; Lemiere, G. L. F.; Rombouts, G.; Pieters, L.;
Haemers, A.; Dommisse, R. A. Synthesis of Isocryptolepine via a Pd-Catalyzed
‘Amination-Arylation'' Approach. Synlett 2003, 5, 615-618.
(33) Sabine, R. W.; Battina, N.; Kurt, F. Stereoselective hydrolysis of sec-mono-alkyl
sulfate esters with retention of configuration. Tetrahedron 2005, 61, 1517-1521.
(34) Dhanabal, T.; Sangeetha, R.; Mohan, P. S. Fischer indole synthesis of the
indoloquinoline alkaloid: cryptosanguinolentine. Tetrahedron Lett. 2005, 46,
4509-4510.
(35) Dhanabal, T.; Sangeetha, R.; Mohan, P. S. Heteroatom directed photoannulation:
synthesis of indoloquinoline alkaloids: cryptolepine, cryptotackieine,
cryptosanguinolentine, and their methyl derivatives. Tetrahedron 2006, 62,
6258-6263.
(36) Van Miert, S.; Hostyn, S.; Maes, B. U. W.; Cimanga, K.; Brun, R.; Kaiser, M.;
Matyus, P.; Dommisse, R.; Lemiere, G.; Vlietinck, A.; Pieters, L. Isoneocryptolepine,
a Synthetic Indoloquinoline Alkaloid, as an Antiplasmodial Lead Compound. J. Nat.
Prod. 2005, 68, 674-677.
(37) Chen, Y. L.; Chung, C. H.; Chen, I. L.; Chen, P. H.; Jeng, H. Y. Synthesis and
Cytotoxic Activity Evaluation of Indolo-, Pyrrolo-, and
Benzofuro-Quinolin-2(1H)-Ones and 6-Anilinoindoloquinoline Derivatives. Bioorg.
Med. Chem. 2002, 10, 2705-2712.
(38) Yang, S. H.; Chien, C. M.; Lu, C. M.; Chen, Y. L.; Chang, L. S.; Lin, S. R.
Involvement of c-Jun N-terminal kinase in G2/M arrest and FasL-mediated apoptosis
induced by a novel indoloquinoline derivative, IQDMA, in K562 cells. Leukemia Res.
2007, 31, 1413-1420.
(39) Lin, Y. H.; Yang, S. H.; Chien, C. M.; Hu, X. W.; Huang, Y. H.; Lu, C. M.; Chen, Y.
L.; Lin, S. R. Induction of G2/M Phase Arrest and Apoptosis by a Novel
Indoloquinoline Derivative, IQDMA, in K562 Cells. Drug Dev. Res. 2006, 67,
743-751.
(40) Hu, X. W.; Chien, C. M.; Yang, S. H.; Lin, Y. H.; Lu, C. M.; Chen, Y. L.; Lin, S. R.
A novel indoloquinoline derivative, IQDMA, induces S-phase arrest and apoptosis in
promyelocytic leukemia HL-60 cells. Cell Biol. Toxicol. 2006, 22, 417-427.
(41) Bergman, J.; Engqvist, R.; Stalhandske, C.; Wallberg, H. Studies of the Reaction
between Indo-2,3 diones (isatin) and 2-Aminobenzylamine. Tetrahedron 2003, 59,
1033-1048.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊