|
1.H. Amano, N. Sawaki, I. Akasaki and Y. Toyoda, “Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer,” Appl. Phys. Lett. 48, 353 (1986). 2.H. Amano, M. Kito, K. Hiramatsu, and I. Akasaki, “P-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation (LEEBI),” Jpn. J. Appl. Phys. 28 , L2112 (1989). 3.S. Nakamura, M. Senoh, and T. Mukai, “Highly p-typed Mg-doped GaN films grown with GaN buffer layers,” Jpn. J. Appl. Phys. 30 , L1708 (1991). 4.S. Nakamura, “GaN growth using GaN buffer layer,” Jpn. J. Appl. Phys. 30, L1705 (1991). 5.陳延存,國立清華大學材料與工程學系碩士學位論文, (2010)。 6.A. Y. C. Yu, “Electron tunneling and contact resistance of metal-silicon contact barriers,” Solid State Electron. 13, 239 (1970). 7.C. Y. Chang, Y. K. Fang, and S. M. Sze, “Specific contact resistance of metal-semiconductor barriers,” Solid State Electron. 14, 541 (1971). 8.S. M. Sze, Physics of Semiconductor Devices (Wiley, New York), p.245, 1981. 9.J. T. Trexler, S. J. Pearton, P. H. Holloway, M. G. Mier, K. R. Evans, and R. F. Karlicek, “Comparison of Ni/Au, Pd/Au, and Cr/Au Metallizations for Ohmic Contacts to p-GaN,” Mater. Res. Soc. Symp. Proc. 449, 1091 (1997). 10.F. A. Padovani, and R. Stratton, “Field and thermionic-field emission in Schottky barriers,” Solid State Electron. 9, 695 (1966). 11.C. R. Crowell, and V. L. Rideout, “Normalized thermionic-field (TF) emission in metal-semiconductor (Schottky) barriers,” Solid State Electron. 12, 89 (1969). 12.R. Stratton, and F. A. Padovani, “Differential resistance peaks of Schottky barrier diodes,” Solid State Electron. 10, 813 (1967). 13.G. S. Marlow, and M. B. Das, “The Effects of Contact Size and Non-Zero Metal Resistance on the Determination of Specific Contact Resistance,” Solid State Electron. 25, 91 (1982). 14.V. Y. Niskov, and G. A. Kubetskii, “Resistance of ohmic contacts between metals and semiconductor films,” Sov. Phys. Semicond. 4, 1553 (1971). 15.W. G. Bickley, Bessel Functions, pp. 220-225. University Press, Cambridge (1960). 16.J. J. Wierer, D. A. Steigerwald, M. R. Krames, J. J. O’Shea, M. J. Ludowise,G.Christenson, Y.C. Shen, C. Lowery, P. S. Martin, S. Subramanya, W. Götz,N. F. Gardner, R. S. Kern, and S. A. Stockmam, “High-power AlGaInN flip-chip light-emitting diodes,” Appl. Phys. Lett. 78, 3379 (2001). 17.W. S. Chen, S. C. Shei, S. J. Chang, Y. K. Su, W. C. Lai, C. H. Kuo, Y. C. Lin, C. S. Chang, T. K. Ko, Y. P. Hsu, and C. F. Shen, “Rapid thermal annealed InGaN/GaN flip-chip LEDs,” IEEE Trans. Electron Devices. 53, 32 (2006). 18.S. J. Cai, R. Li, Y. L. Chen, L. Wong, W. G. Wu, S. G. Thomas, and K. L. Wang, “High performance AlGaN/GaN HEMT with improved ohmic contacts,” Elctron. Lett. 34, 2354 (1998). 19.Z. Fan, S. N. Mohammad, W. Kim, O. Aktas, A. E. Botchkarev, and H. Morkoc, “Very low resistance multilayer Ohmic contact to n-GaN,” Appl. Phys. Lett. 68, 1672 (1996). 20.J. K. Kim, J. L. Lee, J. W. Lee, H. E. Shin, Y. J. Park, and T. Kim, “Low resistance Pd/Au ohmic contacts to p-type GaN using surface treatment,” Appl. Phys. Lett. 73, 2953 (1998). 21.J. Sun, K. A. Rickert, J. M. Redwing, A. B. Ellis, F. J. Himpsel, and T. F. Kuech, “p-GaN surface treatments for metal contacts,” Appl. Phys. Lett. 76, 415 (2000). 22.H. Ishikawa, S. Kobayashi, Y. Koide, S. Yamasaki, S. Nagai, J. Umezaki, M. Koike, and M. Murakami, “Effects of surface treatments and metal work functions on electrical properties at p-GaN/metal interfaces,” J. Appl. Phys. 81, 1315 (1997). 23.S. Nakamura, N. Iwasa, M. Senoh, and T. Mukai, “Hole Compensation Mechanism of P-Type GaN Films,” Jpn. J. Appl. Phys. 31, 1258 (1992). 24.Y. Ohba, and A. Hatano, “H-atom incorporation in Mg-doped GaN grown by metalorganic chemical vapor deposition,” Jpn. J. Appl. Phys. 33, L1367 (1994) 25.Y. J. Lin, “H-atom incorporation in Mg-doped GaN grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 84,2760 (2004) 26.I. Wakia, H. Fujioka, M. Oshima, H. Miki, M. Okuyama, “Low-temperature activation of Mg-doped GaN with thin Co and Pt films,” Appl. Surf. Sci. 190, 339 (2002). 27.T. Wei, J. Wang, N. Liu, H. Lu, Y. Zeng, G. Wang, and J. Li, “Catalytic Activation of Mg-Doped GaN by Hydrogen Desorption Using Different Metal Thin Layers,” Jpn. J. Appl. Phys. 49, 100201 (2010). 28.李正中,薄膜光學與鍍膜技術,藝軒圖書出版社,2002年,P.144 29.J. O. Song, J. S. Kwak, Y. Park, and T. Y. Seong, “Ohmic and degradation mechanisms of Ag contacts on p-type GaN,” Appl. Phys. Lett. 86, 062104 (2005). 30.J. Y. Kim, S. I. Na, G. Y. Ha, M. K. Kwon, I. K. Park, J. H. Lim, and S. J. Park, “Thermally stable and highly reflective AgAl alloy for enhancing light extraction efficiency in GaN light-emitting diodes,” Appl. Phys. Lett. 88, 043507 (2006). 31.S. K. Sharma, and J. Spitz, “Hillock formation hole growth and agglomeration in thin silver films,” J. Appl. Phys. 86, 4491 (1999). 32.D. S. Zhao, S. M. Zhang, L. H. Duan, Y. T. Wang, D. S. Jiang, W. B. Liu, B. S. Zhang, and H. Yang, “Effects of Ag on Electrical Properties of Ag/Ni/p-GaN Ohmic Contact,” Phys. Lett. 24, 1741 (2007). 33.H. W. Jang, and J. L. Lee, “Mechanism for ohmic contact formation of Ni/Ag contacts on p-type GaN,” Appl. Phys. Lett. 85, 5920 (2004). 34.D. S. Leem, J. O. Song, H. G. Hong, J. S. Kwak, Y. Park, and T. Y. Seong, “High-Quality Cu-Ni Solid Solution/Ag Ohmic Contacts for Flip-Chip Light-Emitting Diodes,” Phys. Stat. Sol. (a). 201, 2823 (2004) 35.J. O. Song, D. S. Leem, J. S. Kwak, O. H. Nam, Y. Park, and T. Y. Seong, “Low-resistance and highly-reflective Zn–Ni solid solution/Ag ohmic contacts for flipchip light-emitting diodes,” Appl. Phys. Lett. 83, 4990 (2003) 36.K. Y. Ban, H. G. Hong, D. Y. Noh, J. I. Sohn, D. J. Kang, and T. Y. Seong, “Ir/Ag reflector for high-performance GaN-based near UV light emitting diodes,” Mater. Sci. Eng. B. 133, 26 (2006) 37.J. Cho, H. Kim, Y. Park, and E. Yoon, “Effects of p-electrode reflectivity on extraction efficiency of nitride-based light-emitting diodes,” Appl. Phys. Expr. 1, 052001 (2008). 38.K. Y. Ban, H. G. Hong, D. Y. Noh, T. Y. Seong, J. O. Song, and D. Kim, “Use of an indium zinc oxide interlayer for forming Ag-based Ohmic contacts to p-type GaN for UV-light-emitting diodes,” Semicond. Sci. Technol. 20, 921 (2005). 39.J. O. Song, J. S. Kwak, and T. Y. Seong, “Cu-doped indium oxide/Ag ohmic contacts for high-power flip-chip light-emitting diodes,” Appl. Phys. Lett. 86, 062103 (2005). 40.H. G. Hong, K. Y. Ban, J. O. Song, J. Cho, Y. Park, J. S. Kwak, I. T. Ferguon, and T. Y. Seong, “High quality tin zinc oxide/Ag ohmic contacts for UV flip-chip light-emitting diodes,” Phys. Stat. Sol. (c)3, 2133 (2006). 41.J. O. Song, D. S. Leem, J. S. Kwak, O. H. Nam, Y. Park, and T. Y. Seong. Low resistance and reflective, “Mg-doped indium oxide-Ag ohmic contacts for flip-chip light-emitting diodes,” IEEE Phot. Tech. Lett. 16, 1450 (2004) 42.H. G. Hong, J. O. Song, T. Lee, I. T. Ferguson, J. S. Kwak, and T. Y. Seong, “Improvement of the reverse leakage behavior of Ag-based ohmic contacts for GaN-based light-emitting diodes using MgZnO interlayer,” Mater. Sci. Eng. B. 129, 176 (2006). 43.H. W. Jang, and J. L. Lee, “Low-resistance and high-reflectance Ni Ag Ru Ni Au ohmic contact on p -type GaN,” Appl. Phys. Lett. 85, 4421 (2004). 44.J. H. Son, G. H. Jung, and J. L. Lee, “Enhancement of light reflectance and thermal stability in Ag–Cu alloy contacts on p -type GaN,” Appl. Phys. Lett. 93, 012102 (2008). 45.H. Kim, K. H. Baik, J. Cho, J. W. Lee, S. Yoon, H Kim, S. N Lee, C. Sone, Y. Park, and T. Y. Seong, “High-reflectance and thermally stable AgCu alloy p-type reflectors for GaN-based light-emitting diodes,” IEEE Phot. Tech. Lett. 19, 336 (2007). 46.J. H. Son, G. H. Jung, and J. L. Lee, “Highly reflective Ag–Cu alloy-based ohmic contact on p-type GaN using Ru overlayer,” Opt. Lett. 33, 2907 (2008). 47.R. Kawai, T. Mori, W. Ochiai, A. Suzuki, M Iwaya, H. Amano, S. Kamiyama, and I. Akasaki, “High-reflectivity Ag-based p-type ohmic contacts for blue light-emitting diodes,” Phys. Status Solidi C. 6, S830 (2009). 48.G. H. Jung, J. H. Son, Y. H. Song, and J. L. Lee, “Strain induced suppression of silver agglomeration of indium-containing silver contact,” Appl. Phys. Lett. 96, 201904 (2010). 49.Y. H. Song, J. H. Son, G. H. Jung, and J. L. Lee, “Effects of Mg Additive on Inhibition of Ag Agglomeration in Ag-Based Ohmic Contacts on p-GaN,” Electrochm. Solid-State Lett. 13, H173 (2010) 50.B. Y. Cheng, I. C. Chen, C. H. Kuo, and L. C. Chang, “High Reflectance Contacts to P-type GaN Using Ag-La Alloys,” ECS Transactions. 44, 1285 (2012). 51.J. Y. Kim, S. I. Na, G. Y. Ha, M. K. Kwon, I. K. Park, J. H. Lim, and S. J. Park, “Thermally stable and highly reflective AgAl alloy for enhancing light extraction efficiency in GaN light-emitting diodes,” Appl. Phys. Lett. 88, 043507 (2006). 52.S. M. Sze, Semiconductor devices, physics and technology (Wiley ; Bell Telephone Lab, New York), p.37, 1985.
|