|
1. Jain, H., Prabhu, Y., Varma, M.: Extreme Multi-label Loss Functions for Recommendation, Tagging, Ranking & Other Missing Label Applications. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 935–944. ACM (2016) 2. Prabhu, Y., Varma, M.: FastXML: A Fast, Accurate and Stable Tree-classifier for eXtreme Multi-label Learning. In: Proceedings of the 20nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 263–272. ACM (2014) 3. Bhatia, K., Jain, H., Kar, P., Varma, M., Jain, P.: Sparse Local Embeddings for Extreme Multi-label Classification. In: Advances in Neural Information Processing Systems, pp. 730–738 (2015) 4. Babbar, R., & Shoelkopf, B.: DiSMEC: Distributed Sparse Machines for Extreme Mul-ti-label Classification. In: Proceedings of the Tenth ACM International Conference on Web Search and Data Mining, pp. 721–729. ACM (2017) 5. Yen, I. E., Huang, X., Zhong, K., Ravikumar, P., Dhillon, I. S.: PD-Sparse : A Primal and Dual Sparse Approach to Extreme Multiclass and Multilabel Classification. In: Proceedings of The 33rd International Conference on Machine Learning, pp. 3069–3077. IEEE (2016) 6. Xu, C., Tao, D., Xu, C.: Robust Extreme Multi-label Learning. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1275–1284. ACM (2016) 7. Yu, H. F., Jain, P., Kar, P., Dhillon, I. S.: Large-scale Multi-label Learning with Missing Labels. In: Proceedings of The 31st International Conference on Machine Learning, pp. 593–601. IEEE (2014) 8. Adnan, M. N., Islam, M. Z.: Forest CERN: A New Decision Forest Building Technique. In: Pacific-Asia Conference on Knowledge Discovery and Data Mining, pp. 304–315. Springer International Publishing (2016) 9. Adnan, M. N., Islam, M. Z.: On Improving Random Forest for Hard-to-Classify Records. In: Advanced Data Mining and Applications: 12th International Conference, pp. 558–566. Springer International Publishing (2016) 10. Snoek, C.G., Worring, M., Van Gemert, J.C., Geusebroek, J.M., Smeulders, A.W.: The challenge problem for automated detection of 101 semantic concepts in multimedia. In: Pro-ceedings of the 14th Annual ACM International Conference on Multimedia, pp. 421– 430. ACM (2006) 11. Katakis, I., Tsoumakas, G., Vlahavas, I: Multilabel text classification for automated tag sug-gestion. In: ECML/PKDD Discovery Challenge, (2008) 12. Tsoumakas, G., Katakis, I., Vlahavas, I.: Effective and efficient multilabel classification in domains with large number of labels. In: ECML/PKDD 2008 Workshop on Mining Multi-dimensional Data, pp. 30-44. (2008) 13. Mencia, E. L., Fürnkranz, J.: Efficient pairwise multilabel classification for large-scale prob-lems in the legal domain. In: Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pp. 50-65. (2008) 14. McAuley, J., Leskovec, J.: Hidden factors and hidden topics: understanding rating dimen-sions with review text. In: Proceedings of the 7th ACM conference on Recommender sys-tems, pp. 165-172. ACM (2013) 15. Zubiaga, A.: Enhancing navigation on wikipedia with social tags. In: Preprint. (2012) 16. Partalas, I., Kosmopoulos, A., Baskiotis, N., Artieres, T., Paliouras, G., Gaussier, E., An-droutsopoulos, I., Amini, M.-R., Galinari, P.: LSHTC: A benchmark for large-scale text classification. In: Preprint. (2015) 17. The Extreme Classification Repository. http://research.microsoft.com/en-us/um/people/manik/downloads/XC/XMLRepository.html. 18. John, G. H., Langley, P.: Estimating continuous distributions in Bayesian classifiers. In: Proceedings of the Eleventh conference on Uncertainty in artificial intelligence, pp. 338-345. (1995) 19. Safavian, S. R., Landgrebe, D.: A survey of decision tree classifier methodology. In: IEEE transactions on systems, man, and cybernetics, pp. 660-674. (1991) 20. Weston, J., Makadia, A., Yee, H.: Label Partitioning For Sublinear Ranking. In: Proceeding of ICML, pp. 181-189. (2013) 21. Krizhevsky, A., Sutskever, I., Hinton, G. E.: Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp. 1097-1105. (2012) 22. Suykens, J. A., Vandewalle, J.: Least squares support vector machine classifiers. In: Neural processing letters, pp. 293-300. (1999) 23. Al Bataineh, M., Al-qudah, Z.: A novel gene identification algorithm with Bayesian classifi-cation. In: Biomedical Signal Processing and Control, pp. 6-15. (2017) 24. Goodman, K. E., Lessler, J., Cosgrove, S. E., Harris, A. D., Lautenbach, E., Han, J. H., Tamma, P. D.: A Clinical Decision Tree to Predict Whether a Bacteremic Patient Is Infected With an Extended-Spectrum β-Lactamase–Producing Organism. In: Clinical Infectious Dis-eases, pp. 896-903. (2016) 25. Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M., Thrun, S.: Der-matologist-level classification of skin cancer with deep neural networks. In: Nature, pp. 115-118. (2017) 26. Geng, Y., Chen, J., Fu, R., Bao, G., Pahlavan, K.: Enlighten wearable physiological moni-toring systems: On-body rf characteristics based human motion classification using a sup-port vector machine. In: IEEE transactions on mobile computing, pp. 656-671. (2016)
|