跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.23) 您好!臺灣時間:2025/10/26 23:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林哲諄
研究生(外文):Jhe-Jhun Lin
論文名稱:光纖足底壓力感測器之設計與研製
論文名稱(外文):Design and Fabrication of a Fiber Plantar Pressure Sensors
指導教授:梁財春梁財春引用關係
指導教授(外文):Tsair-Chun Liang
學位類別:碩士
校院名稱:國立高雄第一科技大學
系所名稱:電機工程研究所碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:129
中文關鍵詞:皮爾森相關係數足底壓力感測器布拉格光纖光柵
外文關鍵詞:Pearson correlation coefficientFiber Bragg grating (FBG)Plantar pressure sensors
相關次數:
  • 被引用被引用:4
  • 點閱點閱:459
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本論文研究進行光纖足底壓力感測器之設計與研製,並使用此研製方法來量測及矯正人類足底壓力的分佈狀態。本研究之足底壓力感測器主要是以布拉格光纖光柵(Fiber Bragg grating, FBG)作為感測元件,並使用SC-877翻模矽膠作為感測介質,經感測器靈敏度測試而選擇最適合的翻模矽膠主劑與硬化劑調配比例100:10來當感測器的彈性膠體。在足底壓力的分佈狀態量測方面,依據Pedar-X鞋墊式足壓測試系統所定義的成人鞋墊尺寸圖,定義6個區域進行測量,分類為四種足型,分別為正常足、高弓足、外旋足與扁平足。經由11位測試者量測足底壓力分佈,並進行足型分類,量測結果與i-Step P1000足底壓力測試板進行皮爾遜相關性的比較,結果顯示兩台足底壓力感測器的相關性為0.581。所以,自製之足底壓力感測器具有良好的量測準確性與重覆性,且與市面上的足壓感測器做比較,此感測器在結構上較簡單,製作上也比較容易且成本低廉。在矯正鞋墊製造與測試方面,由足底壓力的分佈狀態量測結果是扁平足者穿上矯正鞋墊1個月進行矯正,實驗結果顯示,矯正鞋墊可達到矯正效果,內側足弓壓力分佈確實有減少,且扁平足常見的症狀,如長時間行走或跑步而引起足部疼痛的狀況都獲得改善。
This paper research for plantar pressure fiber optical sensor design and develop,and uses this method to measurement and correction of the human foot pressure distribution state. The mainly base element of fiber plantar pressure sensor is fiber Bragg grating (FBG). It is used as the sensing element, and the SC-877 silicone as the sensing medium. After the sensor sensitivity test, the best material for elastic gel sensors is mixed with the main base and hardener with the ratio of 100:10. For measurement with distribution of plantar pressure, this study refers to adult size chart of Pedar-X insole foot pressure testing system type and defines six measurement areas that can classified into four foot types, namely neutral foot, cavus foot, supinated foot and flat foot. The plantar pressure distribution of eleven testers with differentiate foot types were measured. The Pearson correlation coefficient of the measurement results with homemade fiber optic pressure sensor plantar and i-Step P1000 plantar pressure plate is 0.581. Therefore, the homemade plantar pressure sensor has the highest measurement accuracy and repeatability. Besides, this sensor has simple structure that can be made easily and low costs. In the manufacturing and testing of the orthotic insole, this study selected the flat foot testers to wear the orthotic insole a month. Experimental results show that the effect of corrective orthotic insole can reduce stress distribution inside the arch and improve the symptoms of flat feet, such as the foot pain caused by walking or running.
中文摘要 i
ABSTRACT ii
誌謝 iv
目錄 vi
表目錄 ix
圖目錄 x
符號說明 xvi
第一章 緒論 1
1.1 前言 1
1.2 研究動機 1
1.3 光纖光柵壓力感測器之文獻回顧 2
1.3.1 裸光纖光柵壓力感測器 2
1.3.2 以球型玻璃為外殼之光纖光柵壓力感測器 3
1.3.3 以聚合物為外襯之光纖光柵壓力感測器 4
第二章 光纖感測系統原理介紹 6
2.1 光纖簡介 6
2.1.1 光纖構造 6
2.1.2 光纖傳輸的優點 7
2.1.3 光纖傳輸的缺點 7
2.1.4 光纖的種類 11
2.1.5 多模光纖與單模光纖 14
2.1.6 光纖訊號傳遞原理 14
2.2 光纖光柵的基本介紹 16
2.2.1 光纖光柵的特點 16
2.2.2 光纖光柵的種類 16
2.2.3 布拉格光纖光柵對應變及溫度的感測原理 18
2.2.4 光纖光柵之應用 20
2.2.5 光纖感測器之應用 21
第三章 介紹各足型之足底壓力分布與i-Step P1000足底壓力板及矯正鞋墊製作過程 23
3.1 介紹扁平足與改善方法 23
3.1.1 介紹扁平足 23
3.1.2 扁平足可分為僵硬與彈性兩種類型 24
3.1.3 扁平足有什麼併發症 24
3.1.4 改善方法 24
3.2 介紹外旋足與改善方法 24
3.2.1 介紹外旋足 24
3.2.2 形成外旋足的原因 25
3.2.3 外旋足有什麼併發症 25
3.2.4 改善方法 26
3.3 介紹高弓足與改善方法 26
3.3.1 介紹高弓足 26
3.3.2 形成高弓足的原因 27
3.3.3 高弓足有什麼併發症 27
3.3.4 改善方法 27
3.4 介紹正常足 27
3.5 介紹各足型及足底壓力分佈 27
3.6 介紹i-Step P1000足底壓力板 29
3.7 介紹矯正鞋墊製作過程 30
第四章 實驗規劃與方法 32
4.1 實驗前元件測試 32
4.1.1 被動元件測試 32
4.1.2 光纖光柵中心波長量測 33
4.2 足底壓力感測器之實驗規劃 34
4.2.1 定義出測量足底壓力6個區域 35
4.2.2 足底壓力感測器彈性膠體之製作 37
4.3 感測器測量原始足底壓力之實驗規劃 40
4.4 矯正鞋墊置於感測器上面之實驗規劃 44
4.5 矯正鞋墊放置在扁平足測試者鞋子之實驗規劃 46
4.6 感測器測量結果對照各足型標準去定義出測試者足型 47
4.7 定義出的足型與i-Step P1000足底壓力板測量的結果是否相同 48
4.8 使用皮爾遜相關係數去比較出足底壓力感測器跟i-Step P1000足底壓力板的相關性 49
第五章 實驗過程與量測結果 53
5.1 不同比例之感測器靈敏度測試結果與討論 53
5.2 足底壓力測試結果對照各足型標準圖定義出測試者足型之實驗結果 54
5.2.1 十一個測試者足底壓力實驗結果 54
5.2.2 左、右腳都(正常足)之實驗結果 55
5.2.3 左、右腳都(高弓足)之實驗結果 59
5.2.4 左、右腳都(扁平足)之實驗結果 63
5.2.5 左、右腳都外旋足(足內翻)之實驗結果 66
5.2.6 左腳都(高弓足)、右腳都(正常足) 68
5.3 比較定義出的足型與i-Step P1000足底壓力板所測量之足型是否吻合之實驗結果 71
5.3.1 測試者1~3踩完i-Step P1000足底壓力板與光纖足底壓力感測
器所測量到左、右腳都正常足之實驗結果 71
5.3.2 測試者4~7踩完i-Step P1000足底壓力板與光纖足底壓力感測
器所測量到左、右腳都高弓足之實驗結果 74
5.3.3 測試者8~9踩完i-Step P1000足底壓力板與光纖足底壓力感測
器所測量到左、右腳都扁平足之實驗結果 77
5.3.4 測試者10踩完i-Step P1000足底壓力板與光纖足底壓力感測器
所測量到左、右腳都外旋足之實驗結果 80
5.3.5 測試者11踩完i-Step P1000足底壓力板與光纖足底壓力感測器
所測量到左腳都(高弓足)跟右腳都(正常足)之實驗結果 81
5.4 皮爾遜相關係數實驗結果與討論 84
5.4.1比較 i-Step P1000足底壓力板與光纖足底壓力感測器在6個區
域的相關性實驗結果 84
5.4.2比較i-Step P1000足底壓力板與光纖足底壓力感測器在各個區
域的相關性實驗結果 85
5.5 矯正鞋墊之實驗結果 91
5.6 穿戴矯正鞋墊一個月之測試者心得 94
5.7 感測器穩定性 94
第六章 結論 98
6.1 結論 98
6.2 未來展望 98
參考文獻 99
附錄一、中英文對照表 107
[1] H. Fu, X. Shu, R. Suo, L. Zhang, S. He, B. I, “Transversal-load sensor by using local pressure on a chirped fiber Bragg grating,” Sensors Journal, IEEE., Vol. 10, No. 6, pp. 1140–1141, 2010.
[2] G. Rajan, B. Liu, Y. Luo, E. Ambikairajah, G. D. Peng, “High sensitivity force and pressure measurements using etched single mode polymer fiber Bragg gratings,” Sensors Journal, IEEE,. Vol. 13, No. 5, pp. 1794–1800, 2013.
[3] J. Huang, Z. Zhou, X. Wen, D. Zhang, “A diaphragm-type fiber Bragg grating pressure sensor with temperature compensation,” Measurement., Vol. 46, No. 3, pp. 1041–1046, 2013.
[4] C. W. Lai, Y. L. Lo, J. P. Yur, W. F. Liu, C. H. Chuang, “Application of fiber Bragg grating level sensor and Fabry-Pérot pressure sensor to simultaneous measurement of liquid level and specific gravity,” Measurement., Vol. 45, No. 3, pp. 469–473, 2012.
[5] H. K. Bal, K. Soin, P. McLaughlin, S. F. Collins, N.M. Dragomir, “Fibre Bragg grating sensors for human skin pressure measurements,” Optical Fibre Technology (ACOFT)., pp. 1–3, 2010.
[6] H. Sakata, T. Iwazaki, “Sensitivity-variable fiber optic pressure sensors using microbend fiber gratings,” Optics Communications, Vol. 282, No. 23, pp. 4532–4536, 2009.
[7] P. F. Liu, G. J. Liu, Q. Zhao, Y. J. Wang, F. Li, “A study of the development and application of fiber Bragg grating pressure sensors,” Optics and Microelectronics Technology., pp. 232–235, 2011.
[8] D. D. Wang, M. Cao, C. Li, D. Li, Y. Chen, X. P. Xu, J. C. Xu, Y. N. Li, Z. Wan, B. Wang, “Fiber Bragg grating liquid level sensor with double pressure and temperature sensitivities,” Procedia Engineering., Vol. 15, pp. 704–709, 2011.
[9] A. S. Guru Prasad, S. N. Omkar, H. N. Vikranth, V. Anil, K. Chethana, S. Asokan, “Design and development of fiber Bragg grating sensing plate for plantar strain measurement and postural stability analysis,” Measurement., Vol. 47, pp. 789–793, 2014.
[10] L. Dziuda, F. W. Skibniewski, M. Krej, J. Lewandowski, “Monitoring respiration and cardiac activity using fiber Bragg grating-based sensor,” Biomedical Engineering., Vol. 59, No. 7, pp. 1934–1942, 2012.
[11] 王信福, D型光纖生化感測器,國立中央大學光電科學研究所,碩士論文,2005。
[12] 黃俊傑,量測雙光纖式光學捕捉下之耦合效率及其在生醫光電之應用,國立陽明大學生醫光電工程研究所,碩士論文,2006。
[13] Kevin M. Moerman, Andre M.J. Sprengers, Aart J. Nederveen, Ciaran K. Simms, “A novel MRI compatible soft tissue indentor and fiber Bragg grating force sensor,” Medical Engineering & Physics., Vol. 35, No. 4, pp. 486–499, 2013.
[14] J. P. Carmo, A. M. F. da Silva, R. P. Rocha, J. H. Correia, “Application of fiber Bragg gratings to wearable garments,” Sensors Journal, IEEE., Vol. 12 , No. 1, pp. 261–266, 2012.
[15] W. Zhou, X. Dong, K. Ni, C.C. Chan, P. Shum, “Temperature-insensitive accelerometer based on a strain-chirped FBG,” Sensors and Actuators A: Physical., Vol. 157, No. 1, pp. 15–18, 2010.
[16] K. Ni, C. C. Chan, X. Dong, L. Li, Correia, “Temperature-independent accelerometer using a fiber Bragg grating incorporating a biconical taper,” Optical fiber Technology., Vol. 19, No. 5, pp. 410–413, 2013.
[17] N. Basumallick, I. Chatterjee, P. Biswas, K. Dasgupta, S. Bandyopadhyay, “Fiber Bragg grating accelerometer with enhanced sensitivity,” Sensors and Actuators Physical., Vol. 173, No. 1, pp. 108–115, 2012.
[18] C. Shen, C. Zhong, “Novel temperature-insensitive fiber Bragg grating sensor for displacement measurement,” sensor and Actuators A: Physical, Vol. 170, No. 1–2, pp. 51-54, 2011.
[19] Q. Wu, A.M. Hatta, P. Wang, Y. Semenova, G. Farrell, “Use of a bent single SMS fiber structure for simultaneous measurement of displacement and temperature sensing,” Photonics Technology Letters, IEEE., Vol. 23, No. 2, pp. 130–132, 2011.
[20] C. Ji, C. L. Zhao, Z. Wang, J. Kang, “A intensity-modulated micro-displacement sensor based on a tapered fiber cascaded with a fiber Bragg grating,” Photonics and Optoelectronics (SOPO)., pp. 1–4, 2012.
[21] C. Zhong, C. Y. Shen, J. L. Chu, X. Zou, K. Li, Y. X. Jin and J. F. Wang, “A displacement sensor based on a temperature-insensitive double trapezoidal structure with fiber Bragg grating,” IEEE Sensors J., Vol. 12, No. 5, pp. 1280–1283, 2012.
[22] Q. Rong, X. Qiao, J. Zhang, R. Wang, M. Hu and Z. Feng, “Simultaneous measurement for displacement and temperature using fiber Bragg grating cladding mode based on core diameter mismatch,” J. of Lightwave Technol., Vol. 30, No. 11, pp. 1645–1650, 2012.
[23] 林家煌,光纖振動感測系統之研製與應用,國立高雄第一科技大學光電工程研究所, 碩士論文,2013。
[24] E. Fujiwara, Y. T. Wu, C. K. Suzuki, “Vibration-based specklegram fiber sensor for measurement of properties of liquids,” Optics and Lasers in Engineering. , Vol. 50, No. 12, pp. 1726–1730, 2012.
[25] H. C. Cheng, C. H. Wu, C. C. Yang and Y. T. Chang, “Wavelength division multiplexing spectral amplitude coding applications in fiber vibration sensor systems,” IEEE Sensors J., Vol. 11, No. 10, pp. 2518–2526, 2011.
[26] J. Jung, H. Nam, B. Lee, J. O. Byun and N. S. Kim, “Fiber Bragg grating temperature sensor with controllable sensitivity,” Appl. Opt., Vol. 38, pp. 2752–2754, 1999.
[27] Z. S. Guo, J. Feng, H. Wang, “Cryogenic temperature characteristics of the fiber Bragg grating sensors,” Cryogenics., Vol. 52, No. 10, pp. 457–460, 2012.
[28] Y. Zhan, H. Wu, Q. Yang, S. Xiang and H. He, “Fiber grating sensors for high-temperature measurement,” Optics and Lasers in Engineering, vol. 46 , pp. 349–354, 2008.
[29] H. Bao, X. Dong, S. Zhang, C. Zhao, C. C. Chan and P. Shum, “Temperature-insensitive 2-D pendulum clinometer using two fiber Bragg gratings,” IEEE Photon. Technol. Lett., Vol. 22, No. 12, pp. 863–865, 2010.
[30] K. Ni, X. Dong, Y. Jin and H. Xu, “Temperature-independent fiber Bragg grating tilt sensor,” Microwave and Opt. Technol. Lett., Vol. 52, No. 10, pp. 2250–2252, 2010.
[31] H. Y. Chang, H. J. Sheng, G. R. Lin, C. Y. Chen, Y. Y. Lin, J. C. Mau, M. Y. Fu and W. F. Liu, “A three-dimension tilt-meter based on fiber gratings,” Opto-Electronicsand Communications Conference, Vol. 17, No. 19, pp. 1093–1094 , 2011.
[32] Y. Wang, C. l. Zhao, L. Hu, J. Kang, X. Dong, Z. Zhang and S. Jing, “A novel tilt sensor with a large measurement range based on long-period fiber grating,” International Conference Electronics and Optoelectronics, Vol. 4, pp. V4-65–V4-67, 2011.
[33] M. G. XU, L. Reekie, Y. T. Chow, J. P. Dakin, “Optical in-fiber grating high pressure sensor,” Electron Lett., Vol. 29, pp. 398–399, 1993.
[34] M. G. XU, L. Reekie, Y. T. Chow, J. P. Dakin, “Fiber Grating pressure sensor with enhanced sensitivity using a glass-bubble housin,” Electron Lett., Vol. 32, pp. 128–129, 1996.
[35] Y. Liu, Z. Guo, Y. Zhang, K. S. Chiang, X. Dong, “Simultaneous pressure and temperature measurement with polymer-coated fiber Bragg grating,” Electron Lett., Vol. 36, pp. 564–566, 2000.
[36] 許招墉,光電工學概論,全華科技圖書股份有限公司,台北, 1990 。
[37] 吳曜東,光纖原理與應用,全華科技圖書股份有限公司,台北, 2001 。
[38] 郭原宏,光纖光柵感測器於結構監測之應用,國立臺灣大學土木工程學研究所,碩士論文,2000 。
[39] RD專欄華人之光 – 高錕與光纖通訊技術(中)。
[40] 趙崇儒,光纖傾斜感測器之研製與探討,國立高雄第一科技大學光電工程研究所, 碩士論文,2013。
[41] 謝建偉,溫度無感位移光纖光柵感測器之設計與研製,國立高雄第一科技大學光電工程研究所, 碩士論文,2010。
[42] 潘昭倩,側壓式布拉格光纖光柵壓力感測器之研發,國立高雄第一科技大學光電工程研究所,碩士論文,2007。
[43] 行政院勞工委員會職業訓練局–光纖通信能力本位訓練教材。
[44] C. J. Chung, A. Safaai-Jazi, “Narrow-band spectral filter made of w-index and step-index fibers,” Journal of Lightwave Technology, Vol. 10, No. 1, pp. 42–45, 1992.
[45] S. E. Golowich, W. White, W. A. Reed, E. Knudsen, “Quantitative estimates of mode coupling and differential modal attenuation in perfluorinated graded-index plastic optical fiber,” Journal of Lightwave Technology, Vol. 21, No. 1, pp. 111–121, 2003.
[46] E. Fontana, H. D. Dulman, D. E. Doggett, R. H. Pantell, “Surface plasmon resonance on a single mode optical fiber,” IEEE Transactions on Instrumentation and Measurement, Vol. 47, No. 1, pp. 168–173, 1998.
[47] E. K. Sharma, A. Sharma, I. C. Goyal, “Propagation characteristics of single mode optical fibers with arbitrary index profiles: A simple numerical approach,” IEEE Journal of Quantum Electronics, Vol. 18, No. 10, pp. 1484–1489, 1982.
[48] W. W. Morey, G. Meltz and W. H. Glenn, “Fiber Bragg grating sensor,” in Proc. SPICE Fiber Optic & Laser Sensor VII, 1169, pp. 98–104, 1989.
[49] 高雪松(2005),光纖光柵在光通信領域中的應用,檢索於2007/10/04。
[50] 蘇溥鈞,長週期光纖光柵感測器,逢甲大學,電機工程學系碩士班,碩士論文,2008。
[51] 葉宗樺,應用於受力量測的溫度無感之光纖光柵感測器,國立清華大學電機工程學系,碩士論文,2006。
[52] A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askin, M. A. Putnam and E. J. Friebele, “Fiber grating sensors,” J. of Lightwave Technol., Vol. 15, No. 8, pp. 77–85, 1997.
[53] 邱宗炫、黃裕文、夏中和,光纖光柵應變感測器之溫度與膠合效應之研究,科儀新知第19卷1期,1997。
[54] 林詠彬,光纖光柵感測器於土木結構應用之研究,國立台灣大學土木工程學系,碩士論文,2000。
[55] C. W. Lai, Y. L. Lo, J. P. Yur and Chin-Ho Chuang, “Application of fiber Bragg grating level sensor and Fabry-Perot pressure sensor to simultaneous measurement of liquid level and specific gravity,” IEEE sensor J., Vol. 12, No. 4, pp. 827–831, 2012.
[56] A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo , C. G. Askin, M. A. Putnam and E. J. Friebele, “Fiber grating sensors,” Journal of Lightwave Technol., Vol. 15, No. 8, pp. 77–85, 1997.
[57] J. H. Han, “Switchable dual-wavelength erbium-doped fiber ring laser with cascaded fiber Bragg gratings,” Optik J., Vol. 121, No. 24, pp. 2266–2268, 2010.
[58] C. S. Goh, Y. S. Set and K. Kikuchi, “Widely tunable optical filters based on fiber Bragg gratings,” IEEE Photonics Technol. Lett., Vol. 14, pp. 1306–1308, 2002.
[59] 黃力文,光纖光柵製作與應用,OPTOLINK,1990 。
[60] 微光光纖傳感有限公司,光纖光柵傳感器技術及其應用,2007。作者Email: hongxinglu600010@sina.com.
[61] 高醫醫訊–第十六卷第十一期 。
[62] 肌肉骨骼系統肌動學:復健醫學基礎(第二版) 原著:Donald Neumann 由Elsevier授權出版。
[63] 護足網http://insolesite.info
[64] 柴惠敏,快樂健康腳–依不同足型來選鞋,台灣大學物理治療學系、台大醫院物理治療中心,980507。
[65] 宜蘭觀光工廠–Dr.Foot 達特富足鞋健康知識館。
[66] 美國專業足壓感測系統–Aetrex i-Step Sensor System。
[67] L. Y. Guo, I. J. Ho, Y.Y. Hou, C. H. Yang, W. L. Wu, S. K. Chen, “Comparison of plantar pressure distribution between different speed and incline during treadmill jogging,” Journal of Sports Science and Medicine, pp.154–160, 2010.
[68] Novel pedar-X 藍芽無線鞋內壓力分佈量測系統,pedar insole catalogue 2014。
[68] 維基百科–皮爾遜積差相關係數。htp://zh.wikipedia.org/zh-tw/%E7%9A%AE%E5%B0%94%E9%80%8A%E7%A7%AF%E7%9F%A9%E7%9B%B8%E5%85%B3%E7%B3%BB%E6%95%B0。
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top