|
[1]J. A. Mandelman, R. H. Dennard, G. B. Bronner, J. K. DeBrosse, R. Divakaruni, Y. Li, and C. J. Radens, “Challenges and future directions for the scaling of dynamic random-access memory (DRAM),” IBM J. Res. Develop., vol. 46, no. 2.3, pp. 187-212, Mar. 2002. [2]A. Nitayama, Y. Kohyama, and K. Hieda, “Future Directions For DRAM Memory Cell Technology,” in IEDM Tech. Dig., Dec. 1998, pp. 355-358 [3]N. C.-C. Lu, P. E. Cottrell, W. J. Craig, S. Dash, D. L. Critchlow, R. L. Mohler, B. J. Machesney, T. H. Ning, W. P. Noble, R. M. Parent, R. E. Scheuerlein, E. J. Sprogis, and L. M. Terman, “A Substrate-Plate Trench-Capacitor ( SPT) Memory Cell for Dynamic RAM’s,” IEEE J. Solid-State Circuits, vol. 21, no. 5, pp. 627-634, Oct. 1986. [4]T. Kaga, T. Kure, H. Shinriki, Y. Kawamoto, F. Murai, T. Nishida, Y. Nakagome, D. Hisamoto, T. Kisu, E. Takeda, and K. Itoh, “Crown-Shaped Stacked-Capacitor Cell for 1.5-V Operation 64-Mb DRAM’s,” IEEE Trans. Electron Devices, vol. 38, no. 2, pp. 255-261, Feb. 1991. [5]S. Cristoloveanu, “Silicon on insulator technologies and devices: from present to future,” Solid State Electron., vol. 45, no. 8, pp. 1403-1411, Aug. 2001. [6]J. Tihanyi, and H. Schlötterer, “Properties of ESFI MOS Transistors Due to the Floating Substrate and the Finite Volume,” IEEE Trans. Electron Devices, vol. 22, no. 11, pp. 1017-1023, Nov. 1975. [7]M. R. Tack, M. Gao, C. L. Claeys, and G. J. Declerck, “The Multistable Charge-Controlled Memory Effect in SOI MOS Transistors at Low Temperatures,” IEEE Trans. Electron Devices, vol. 37, no. 5, pp. 1373-1382, May 1990. [8]H. J. Wann, and C. Hu, “A Capacitorless DRAM Cell on SOI Substrate,” in IEDM Tech. Dig., Dec. 1993, pp. 635-638. [9]S. Okhonin, M. Nagoga, J. M. Sallese, and P. Fazan, “A SOI Capacitor-less 1T-DRAM Concept,” in Proc. IEEE Int. SOI Conf., Oct. 2001, pp.153-154. [10]P. C. Fazan, S. Okhonin, M. Nagoga, and J. M. Sallese, “A Simple 1-Transistor Capacitor-Less Memory Cell for High Performance Embedded DRAMs,” in Proc. IEEE Custom Integr. Circuits Conf., 2002, pp. 99-102. [11]J. T. Lin, K. D. Huang, and B. T. Jheng, “Performances of a Capacitorless 1T-DRAM Using Polycrystalline Silicon Thin-Film Transistors With Trenched Body,” IEEE Electron Device Lett., vol. 29, no. 11, pp. 1222-1225, Nov. 2008. [12]J. H. Han, S. W. Ryu, D. H. Kim, C. J. Kim, S. Kim, D. I. Moon, S. J. Choi, and Y. K. Choi, “Fully Depleted Polysilicon TFTs for Capacitorless 1T-DRAM,” IEEE Electron Device Lett., vol. 30, no. 7, pp. 742-744, Jul. 2009. [13]J. W. Han, C. J. Kim, S. J. Choi, D. H. Kim, D. I. Moon, and Y. K. Choi, “Gate-to-Source/Drain Nonoverlap Device for Soft-Program Immune Unified RAM (URAM),” IEEE Electron Device Lett., vol. 30, no. 5, pp. 544-546, May 2009. [14]J. W. Han, S. W. Ryu, D. H. Kim, and Y. K. Choi, “Polysilicon Channel TFT With Separated Double-Gate for Unified RAM (URAM)—Unified Function for Nonvolatile SONOS Flash and High-Speed Capacitorless 1T-DRAM,” IEEE Trans. Electron Devices, vol. 57, no. 3, pp. 601-607, Mar. 2010. [15]J. K. Park, and W. J. Cho, “Dual Read Method by Capacitance Coupling Effect for Mode-Disturbance-Free Operation in Channel-Recessed Multifunctional Memory,” IEEE Electron Device Lett., vol. 33, no. 12, pp. 1708-1710, Dec. 2012. [16]M. Lee, T. Moon, and S. Kim, “Floating Body Effect in Partially Depleted Silicon Nanowire Transistors and Potential Capacitor-Less One-Transistor DRAM Applications,” IEEE Trans. On Nanotechnology, vol. 11, no. 2, pp. 355-359, Mar. 2012. [17]E. Yoshida, and T. Tanaka, “A Design of a Capacitorless 1T-DRAM Cell Using Gate-Induced Drain Leakage (GIDL) Current for Low-Power and High-Speed Embedded Memory,” in IEDM Tech. Dig., Dec. 2003, pp. 37.6.1-37.6.4. [18]E. Yoshida, and T. Tanaka, “A Capacitorless 1T-DRAM Technology Using Gate-Induced Drain-Leakage (GIDL) Current for Low-Power and High-Speed Embedded Memory,” IEEE Trans. Electron Devices, vol. 53, no. 4, pp. 692-697, Apr. 2006. [19]Z. Lu, J. G. Fossum, J.-W. Yang, H. R. Harris, V. P. Trivedi, M. Chu, and S. E. Thompson, “A Simplified Superior Floating-Body/Gate DRAM Cell,” IEEE Electron Device Lett., vol. 30, no. 3, pp. 282-284, Mar. 2009. [20]G. Kim, S. W. Kim, J. Y. Song, J. P. Kim, K.-C. Ryoo, J.-H. Oh, J. H. Park, H. W. Kim, and B.-G. Park, “Body-Raised Double-Gate Structure for 1T DRAM,” in Nanotechnology Materials and Devices Conf., Jun. 2009, pp. 259-263. [21]J.-W. Han, S.-W. Ryu, S.-J. Choi, and Y.-K. Choi, “Gate-Induced Drain-Leakage (GIDL) Programming Method for Soft-Programming-Free Operation in Unified RAM (URAM),” IEEE Electron Device Lett., vol. 30, no. 2, pp. 189-191, Feb. 2009. [22]K.-H. Park, C. M. Park, S. H. Kong, and J.-H. Lee, “Novel Double-Gate 1T-DRAM Cell Using Nonvolatile Memory Functionality for High-Performance and Highly Scalable Embedded DRAMs,” IEEE Trans. Electron Devices, vol. 57, no. 3, pp. 614-619, Mar. 2010. [23]J.-W. Han, D.-I. Moon, D.-H. Kim and Y.-K. Choi, “Parasitic BJT Read Method for High-Performance Capacitorless 1T-DRAM Mode in Unified RAM,” IEEE Electron Device Lett., vol. 30, no. 10, pp.1108-1110, Oct. 2009. [24]Z. Zhou, J. G. Fossum, and Z. Lu, “Physical Insights on BJT-Based 1T DRAM Cells,” IEEE Electron Device Lett., vol. 30, no. 5, pp. 565-567, May 2009. [25]S.-J. Choi, J.-W. Han, D.-I. Moon, and Y.-K. Choi, “Analysis and Evaluation of a BJT-Based 1T-DRAM,” IEEE Electron Device Lett., vol. 31, no. 5, pp. 393-395, May 2010. [26]G. Giusi, M. A. Alam, F. Crupi, and S. Pierro, “Bipolar Mode Operation and Scalability of Double-Gate Capacitorless 1T-DRAM Cells,” IEEE Trans. Electron Devices, vol. 57, no. 8, pp. 1743-1750, Aug. 2010. [27]D.-I. Moon, S.-J. Choi, J.-W. Han, S. Kim, and Y.-K. Choi, “Fin-Width Dependence of BJT-Based 1T-DRAM Implemented on FinFET,” IEEE Electron Device Lett., vol. 31, no. 8, pp. 909-911, Sep. 2010. [28]D.-I. Moon, J.-Y. Kim, J.-B. Moon, D.-O. Kim, and Y.-K. Choi, “Evolution of Unified-RAM: 1T-DRAM and BE-SONOS Built on a Highly Scaled Vertical Channel,” IEEE Trans. Electron Devices, vol. 61, no. 1, pp. 60-65, Jan. 2014. [29]T. Hamamoto, and T. Ohsawa, “Overview and Future Challenges of Floating Body RAM (FBRAM) Technology for 32nm Technology Node and Beyond,” in Proc. ESSDERC, Sep. 2008, pp. 25-29. [30]A. Hubert, M. Bawedin, G. Guegam, S. Cristoloveanu, T. Ernst, and O. Faynot. “Experimental comparison of programming mechanisms in 1T-DRAM cells with variable channel length,” in Proc. ESSDERC, Sep. 2010, pp. 150-153. [31]D.-I. Bae, S. Kim, and Y.-K. Choi, “Low-Cost and Highly Heat Controllable Capacitorless PiFET (Partially Insulated FET) 1T DRAM for Embedded Memory,” IEEE Trans. On Nanotechnology, vol. 8, no. 1, pp. 100-105, Jan. 2009. [32]R. Ranica, A. Villaret, P. Malinge, P. Mazoyer, D. Lenoble, P. Candelier, F. Jacquet, P. Masson, R. Bouchakour, R. Fournel, J. P. Schoellkopf, and T. Skotnicki, “A One Transistor Cell on Bulk Substrate (1T-Bulk) for Low-Cost and High Density eDRAM,” in VLSI Symp. Tech. Dig., Jun. 2004, pp. 128-129. [33]N. Collaert, M. Aoulaiche, B. D. Wachter, M. Rakowski, A. Redolfi, S. Brus, A. D. Keersgieter, N. Horiguchi, L. Altimime, and M. Jurczak, “A low-voltage biasing scheme for aggressively scaled bulk FinFET 1T-DRAM featuring 10s retention at 85°C,” in VLSI Symp. Tech. Dig., Jun. 2010, pp. 161-162. [34]M. G. Ertosun, P. Kapur, and K. C. Saraswat, “A Highly Scalable Capacitorless Double Gate Quantum Well Single Transistor DRAM: 1T-QW DRAM,” IEEE Electron Device Lett., vol. 29, no. 12, pp. 1405-1407, Dec. 2008. [35]M. G. Ertosun, and K. C. Saraswat, “Investigation of Capacitorless Double-Gate Single-Transistor DRAM: With and Without Quantum Well,” IEEE Trans. Electron Devices, vol. 57, no. 3, pp. 608-613, Mar. 2010. [36]S. Lee, J. S. Shin, J. Jang, H. Bae, D. Yun, J. Lee, D. H. Kim, and D. M. Kim, “A Novel Capacitorless DRAM Cell Using Superlattice Bandgap-Engineered (SBE) Structure With 30-nm Channel Length,” IEEE Trans. On Nanotechnology, vol. 10, no. 5, pp. 1023-1030, Sep. 2011. [37]K.-S. Shim, I.-Y. Chung, and Y. J. Park, “A BJT-Based Heterostructure 1T-DRAM for Low-Voltage Operation,” IEEE Electron Device Lett., vol. 33, no. 1, pp. 14-16, Jan. 2012. [38]J. S. Shin, H. Choi, H. Bae, J. Jang, D. Yun, E. Hong, D. H. Kim, and D. M. Kim, “Vertical-Gate Si/SiGe Double-HBT-Based Capacitorless 1T DRAM Cell for Extended Retention Time at Low Latch Voltage,” IEEE Electron Device Lett., vol. 33, no. 2, pp. 134-136, Feb. 2012. [39]M. G. Ertosun, k.-Y. Lim, C. Park, J. Oh, P. Kirsch, and K. C. Saraswat, “Novel Capacitorless Single-Transistor Charge-Trap DRAM (1T CT DRAM) Utilizing Electrons,” IEEE Electron Device Lett., vol. 31, no. 5, pp. 405-407, May 2010. [40]D.-I. Moon, S.-J. Choi, J.-W. Han, and Y.-K. Choi, “An Optically Assisted Program Method for Capacitorless 1T-DRAM,” IEEE Trans. Electron Devices, vol. 57, no. 7, pp. 1714-1718, Jul. 2010. [41]W. Lee, and W. Y. Choi, “A Novel Capacitorless 1T DRAM Cell for Data Retention Time Improvement,” IEEE Trans. On Nanotechnology, vol. 10, no. 3, pp. 462-466, May 2011. [42]N. Rodriguez, F. Gamiz, and S. Cristoloveanu, “A-RAM Memory Cell: Concept and Operation” IEEE Electron Device Lett., vol. 31, no. 9, pp. 972-974, Sep. 2010. [43]N. Rodriguez, S. Cristoloveanu, and F. Gamiz, “Capacitor-less A-RAM SOI memory: Principles, scaling and expected performance,” Solid State Electronic, vol. 59, no. 1, pp. 44-49, May 2011. [44]N. Rodriguez, S. Cristoloveanu, and F. Gamiz, “Novel Capacitorless 1T-DRAM Cell for 22-nm Node Compatible With Bulk and SOI Substrates,” IEEE Trans. Electron Devices, vol. 58, no. 8, pp. 2371-2377, Aug. 2011. [45]N. Rodriguez, C. Navarro, F. Gamiz, F. Andrieu, O. Faynot, and S. Cristoloveanu, “Experimental Demonstration of Capacitorless A2RAM Cells on Silicon-on-Insulator,” IEEE Electron Device Lett., vol. 33, no. 12, pp. 1717-1719, Dec. 2012. [46]N. Rodriguez, F. Gamiz, C. Marquez, C. Navarro, F. Andrieu, O. Faynot, and S. Cristoloveanu, “Fabrication and Validation of A2RAM Memory Cells on SOI and Bulk Substrates,” in IEEE IMW, 2013, pp. 135-138. [47]J. Tihanyi, and H. Schlötterer, “PROPERTIES OF ESFI MOS TRANSISTORS DUE TO THE FLOATING SUBSTRATE AND THE FINITE VOLUME,” in IEDM Tech. Dig., Dec. 1974, pp. 39-42. [48]M. Matloubian, C.-E. D. Chen, B.-Y. Mao, R. Sundaresan, and G. P. Pollack, ”Modeling of the Subthreshold Characteristics of SOI MOSFET’s with Floating Body,” IEEE Trans. Electron Devices, vol. 37, no. 9, pp. 1985-1994, Sep. 1990. [49]J.-Y. Choi, and J. G. Fossum, “Analysis and Control of Floating-Body Bipolar Effects in Fully Depleted Submicrometer SOI MOSFET’s,” IEEE Trans. Electron Devices, vol. 38, no. 6, pp. 1384-1391, Jun. 1991. [50]T. Tanaka, E. Yoshida, and T. Miyashita, “Scalability Study on a Capacitorless 1T-DRAM: From Single-gate PD-SOI to Double-gate FinDRAM,” in IEDM Tech. Dig., Dec. 2004, pp. 919-922. [51]T. Hamamoto, Y. Minami, T. Shino, A. Sakamoto, T. Higashi, N. Kusunoki, K. Fujita, K. Hatsuda, T. Ohsawa, N. Aoki, H. Tanimoto, M. Morikado, H. Nakajima, K. Inoh, and A. Nitayama, “A Floating Body Cell (FBC) fully Compatible with 90nm CMOS Technology Node for Embedded Applications,” in IEEE Int. Conf. ICDT, 2006, pp. 1-6. [52]S. Puget, G. Bossu, C. F.-Beranger, P. Perreau, P. Masson, P. Mazoyer, P. Lorenzini, J.-M. Portal, R. Bouchakour, and T. Skotnicki, “FDSOI Floating Body Cell eDRAM Using Gate-Induced Drain-Leakage (GIDL) Write Current for High Speed and Low Power Applications,” in IEEE IMW, May 2009, pp. 1-2. [53]M. Aoulaiche, N. Collaert, R. Degraeve, Z. Lu, B. D. Wachter, G. Groeseneken, M. Jurczak, and L. Altimime, “BJT-Mode Endurance on a 1T-RAM Bulk FinFET Device,” IEEE Trans. Electron Devices, vol. 31, no. 12, pp. 1380-1382, Dec. 2010. [54]Sentaurus User’s Manual, ver. H-2013.03, Synopsys, Inc. [55](2013). The International Technology Roadmap for Semiconductors (ITRS) [Online]. Available: http://public.itrs.net [56]S. Okhonin, M. Nagoga, E. Carman, R. Beffa, E. Faraoni, “New Generation of Z-RAM,” in IEDM Tech. Dig., Dec. 2007, pp. 925-928.
|