跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/11 09:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳芳津
研究生(外文):Fang-Chin Chen
論文名稱:微型核醣核酸146a對牙周韌帶細胞分化之影響
論文名稱(外文):The Involvement of miR-146a in the Differentiation of Periodontal Ligament Cells
指導教授:張國威
指導教授(外文):Kuo-Wei Chang
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:臨床牙醫學研究所
學門:醫藥衛生學門
學類:牙醫學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:85
中文關鍵詞:牙周韌帶細胞微型核醣核酸146a分化
外文關鍵詞:periodontal ligament cellsmiR-146adifferentiation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:208
  • 評分評分:
  • 下載下載:46
  • 收藏至我的研究室書目清單書目收藏:0
牙周韌帶細胞參與了牙周組織的修復與再生,其具有多分化潛能,在特殊的情況下可以朝向成骨細胞的方向分化,而在骨質代謝中,藉由活化NF-κB 的訊息傳導途徑可以使蝕骨細胞前體分化成蝕骨細胞。微型核醣核酸 (microRNA, miR) 為一小分子RNA,可以在轉譯後調節基因的表現量,其在正常細胞裡參與了許多細胞運轉的過程,其中包括了細胞的分化。在微型核醣核酸中,miR-146a 會受到NF-κB的調控,它也會透過刪減標靶而間接減少NF-κB之活化。因此本研究探討miR-146a與牙周韌帶細胞分化間的關係及探討miR-146a是否經由 NF-κB 的訊息傳導途徑促使牙周韌帶細胞的分化。首先將體外培養的人類牙周韌帶細胞感染攜帶hTERT基因之反轉錄病毒將其不朽化,次則誘導其分化並觀察其骨分化標誌之變化與miR-146a的表現量;另外,以慢病毒攜帶miR-146a 基因,感染人類不朽化牙周韌帶細胞,探討其對分化的影響。實驗結果顯示,被誘導及感染miR-146a的人類不朽化牙周韌帶細胞其骨分化標誌及ALP 的活性皆有增加,表示miR-146a 參與了人類不朽化牙周韌帶細胞的分化;抗壞血酸誘導調高了miR-146a 之表現,而感染miR-146a 的人類不朽化牙周韌帶細胞其細胞核內NF-κB的表現量下降,表示miR-146a 抑制了NF-κB的訊息傳導途徑。本研究初步結論miR-146a 之表現可促進牙周韌帶細胞之分化,經miR-146a 基因工程改造之牙周韌帶細胞或許具牙周修復之應用價值。
Periodontal ligament (PDL) cells exhibit potentials in hard and soft tissue regeneration because of their mutipotential properties. Osteoblastic line of differentiation of PDL cells will occur under special condition. In bone metabolism, pre-osteoclasts differentiate into osteoclasts via activation of NF-κB signaling pathway. MicroRNAs, small RNAs, regulating the gene expression at the post-transcription level, are associated with the cell process, including cell differentiation. miR-146a, one of microRNAs, was reported involved in the regulation of NF-κB. The purpose of this study was to investigate the regulatory role of miR-146a in the differentiation of PDL cells through NF-κB signaling pathway. The PDL cells were first infected by retrovirus carrying hTERT gene to achieve immortalized PDL cells (I-PDL cells). Treatment of ascorbic acid induced the genesis of bone differentiation markers and ALP activity. Interestingly, the treated I-PDL cells also had the up-regulation of miR-146a. Furthermore, I-PDL cells infected with lentivirus carrying miR-146a had the high enforced miR-146a expression and also exhibited higher bone differentiation potential in relation to control cells. In addition, nuclear NF-κB was also decreased in such cells implicating that miR-146a expression inactivated NF-κB signaling. This preliminary study concludes that miR-146a can enhance the differentiation of PDL cells. The PDL cells genetically modified by miR-146a could have clinical potential for periodontal repair.
目錄
頁次
中文摘要………………………………………………………………………………1
英文摘要………………………………………………………………………………2
壹、 緒論………………………………..………………………...……………..…4
一、 微型核醣核酸…………………………………………………………….4
二、 微型核醣核酸146a (miR-146a) .......................……………………...8
三、 牙周韌帶細胞……………………………………………………….……9
四、 核轉錄因子 kappa B (NF-κB).........................................................13
貳、 研究目標…………………………………………………………………….16
參、 研究材料與方法………….………………………………………………....17
一、 牙周韌帶細胞………….………………………………………………..17
二、 細胞培養……………….………………………………….…………….17
三、 冷凍保存細胞及解凍細胞….……………………………………….….19
四、 細胞生長曲線………………..………………………………………….19
五、 不朽化牙周韌帶細胞之建立…..……………………………………….19
六、 誘導不朽化牙周韌帶細胞之分化…..………………………………….25
七、 反轉錄聚合酶連鎖反應………………..……………………………….25
八、 酵素免疫分析法…………………………..…………………………….26
九、 免疫螢光染色………………………………...…………………………27
十、 免疫細胞染色…………………………………...………………………27
十一、 西方點墨法…………………………………...……………………..28
十二、 核蛋白及質蛋白之萃取………………………...…………………..30
十三、 感染miR-146a及GFP至不朽化牙周韌帶細胞………......….....31
十四、 微型核醣核酸之定量反轉錄聚合酶連鎖反應…………….…..…..32
十五、 茜素紅染色…………………………………………………..……...33
十六、 統計分析……………………………………………………...……..34
肆、 研究結果…………………………………………………………………….35
一、 以攜帶hTERT基因的反轉錄病毒感染牙周韌帶細胞使其不朽化....35
二、 誘導不朽化牙周韌帶細胞之分化…………………………………..….36
三、 以攜帶miR-146a之慢病毒感染不朽化牙周韌帶細胞….…......38
四、 miR-146a 與NF-κB 之間的關係……………….…………………...40
伍、 討論…………………………………………………………………………43
陸、 圖例…………………………………………………………………………50
圖一、不朽化牙周韌帶細胞及親代牙周韌帶細胞其細胞內hTERT基因的表現量………………………………………………………………50
圖二、抗壞血酸與β-Glycerophosphate誘導不朽化牙周韌帶細胞分化後骨細胞分化標誌的表現量增加 (反轉錄聚合酶連鎖反應).............51
圖三、抗壞血酸與β-Glycerophosphate誘導不朽化牙周韌帶細胞分化   後ALP蛋白質的表現量增加 (西方點墨法)...……………..........52
圖四、抗壞血酸與β-Glycerophosphate誘導不朽化牙周韌帶細胞分化後ALP蛋白質的表現量增加 (免疫螢光染色)……………….……..53
圖五、抗壞血酸與β-Glycerophosphate誘導不朽化牙周韌帶細胞分化後ALP蛋白質的表現量增加 (免疫細胞染色)……….……………..54
圖六、抗壞血酸與β-Glycerophosphate誘導不朽化牙周韌帶細胞分化後ALP的活性增加……….………………...………………………...55
圖七、抗壞血酸與β-Glycerophosphate誘導不朽化牙周韌帶細胞分化後NF-κB的表現量 (免疫細胞染色)……………….………………..56
圖八、抗壞血酸與β-Glycerophosphate誘導不朽化牙周韌帶細胞分化後miR-146a的表現量增加 (定量反轉錄聚合酶連鎖反應)..……...57
圖九、慢病毒對不朽化牙周韌帶細胞的感染效率…….………………..58
圖十、以miR-146a慢病毒感染不朽化牙周韌帶細胞後miR-146a的表現
量增加 (定量反轉錄聚合酶連鎖反應)…………..………………..59
圖十一、大量表現miR-146a之不朽化牙周韌帶細胞其骨細胞分化標誌的
    表現量 (反轉錄聚合酶連鎖反應)………….…………………..60
圖十二、大量表現miR-146a之不朽化牙周韌帶細胞ALP蛋白質的表
    現量增加 (免疫細胞染色)……………………………………..61
圖十三、大量表現miR-146a之不朽化牙周韌帶細胞其細胞內外OPN蛋白質的表現量及其在細胞內分佈的情形 (西方點墨法)……..62
圖十四、大量表現miR-146a之不朽化牙周韌帶細胞具有較高之ALP活
    性………………………………………………………………..64
圖十五、大量表現miR-146a之不朽化牙周韌帶細胞具有較高之礦化活
    性………………………………………………………………..65
圖十六、大量表現miR-146a之不朽化牙周韌帶細胞NF-κB的表現量
(免疫細胞染色)……..……….…………………………………66
圖十七、大量表現miR-146a之不朽化牙周韌帶細胞NF-κB的表現量
    及其在細胞內分佈的情形 (西方點墨法)……….……………67
柒、 附圖………………………………………………………………………..68
附圖一、p-BABE-puro質體之輿圖…………………………………….68
附圖二、p-BABE-puro-hTERT質體之輿圖.………………….…….....69
附圖三、miR-146a-GFP之慢病毒質體之輿圖……..…………………70
捌、 附表………………………………………………………………………..71
附表一、哺乳類之微型核醣核酸的生物功能…………...……………..71
附表二、與癌症有關的微型核醣核酸…………...……………………..72
附表三、實驗使用之引子序列及黏合溫度…………………………….74
附表四、實驗使用之抗體……………………………………………….75
附表五、各種溶液的配方……………………………………………….76
玖、 參考文獻………………………………………………………………….79
1. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004, 116: 281-297.
2. Robins H, Li Y, Padgett RW. Incorporating structure to predict microRNA targets. Proceedings of the National Academy of Sciences of the United States of America 2005, 102: 4006-4009.
3. Lagos-Quintana M, Rauhut R, Meyer J, Borkhardt A, Tuschl T. New microRNAs from mouse and human. RNA (New York, NY 2003, 9: 175-179.
4. Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T. Identification of tissue-specific microRNAs from mouse. Curr Biol 2002, 12: 735-739.
5. Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 2005, 433: 769-773.
6. Wiemer EA. The role of microRNAs in cancer: no small matter. Eur J Cancer 2007, 43: 1529-1544.
7. Kim VN, Nam JW. Genomics of microRNA. Trends Genet 2006, 22: 165-173.
8. Rodriguez A, Griffiths-Jones S, Ashurst JL, Bradley A. Identification of mammalian microRNA host genes and transcription units. Genome research 2004, 14: 1902-1910.
9. Weber MJ. New human and mouse microRNA genes found by homology search. The FEBS journal 2005, 272: 59-73.
10. Gregory RI, Yan KP, Amuthan G, Chendrimada T, Doratotaj B, Cooch N, et al. The Microprocessor complex mediates the genesis of microRNAs. Nature 2004, 432: 235-240.
11. Yi R, Qin Y, Macara IG, Cullen BR. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes & development 2003, 17: 3011-3016.
12. Hutvagner G, McLachlan J, Pasquinelli AE, Balint E, Tuschl T, Zamore PD. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science (New York, NY 2001, 293: 834-838.
13. Chendrimada TP, Gregory RI, Kumaraswamy E, Norman J, Cooch N, Nishikura K, et al. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 2005, 436: 740-744.
14. Gregory RI, Chendrimada TP, Cooch N, Shiekhattar R. Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell 2005, 123: 631-640.
15. Sontheimer EJ. Assembly and function of RNA silencing complexes. Nature reviews 2005, 6: 127-138.
16. Matranga C, Tomari Y, Shin C, Bartel DP, Zamore PD. Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes. Cell 2005, 123: 607-620.
17. Rand TA, Petersen S, Du F, Wang X. Argonaute2 cleaves the anti-guide strand of siRNA during RISC activation. Cell 2005, 123: 621-629.
18. Giraldez AJ, Mishima Y, Rihel J, Grocock RJ, Van Dongen S, Inoue K, et al. Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science (New York, NY 2006, 312: 75-79.
19. Bagga S, Bracht J, Hunter S, Massirer K, Holtz J, Eachus R, et al. Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell 2005, 122: 553-563.
20. Rajewsky N. microRNA target predictions in animals. Nature genetics 2006, 38 Suppl: S8-13.
21. Kloosterman WP, Plasterk RH. The diverse functions of microRNAs in animal development and disease. Developmental cell 2006, 11: 441-450.
22. Alvarez-Garcia I, Miska EA. MicroRNA functions in animal development and human disease. Development (Cambridge, England) 2005, 132: 4653-4662.
23. Shivdasani RA. MicroRNAs: regulators of gene expression and cell differentiation. Blood 2006, 108: 3646-3653.
24. Zhang B, Wang Q, Pan X. MicroRNAs and their regulatory roles in animals and plants. Journal of cellular physiology 2007, 210: 279-289.
25. Evan GI, Vousden KH. Proliferation, cell cycle and apoptosis in cancer. Nature 2001, 411: 342-348.
26. Esquela-Kerscher A, Slack FJ. Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer 2006, 6: 259-269.
27. Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer 2006, 6: 857-866.
28. Taganov KD, Boldin MP, Chang KJ, Baltimore D. NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proceedings of the National Academy of Sciences of the United States of America 2006, 103: 12481-12486.
29. Sonkoly E, Stahle M, Pivarcsi A. MicroRNAs and immunity: novel players in the regulation of normal immune function and inflammation. Seminars in cancer biology 2008, 18: 131-140.
30. Akira S, Takeda K. Toll-like receptor signalling. Nat Rev Immunol 2004, 4: 499-511.
31. Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S, et al. MicroRNA gene expression deregulation in human breast cancer. Cancer research 2005, 65: 7065-7070.
32. He H, Jazdzewski K, Li W, Liyanarachchi S, Nagy R, Volinia S, et al. The role of microRNA genes in papillary thyroid carcinoma. Proceedings of the National Academy of Sciences of the United States of America 2005, 102: 19075-19080.
33. Lin SL, Chiang A, Chang D, Ying SY. Loss of mir-146a function in hormone-refractory prostate cancer. RNA (New York, NY 2008, 14: 417-424.
34. Bartold PM, McCulloch CA, Narayanan AS, Pitaru S. Tissue engineering: a new paradigm for periodontal regeneration based on molecular and cell biology. Periodontology 2000 2000, 24: 253-269.
35. Sodek J. A comparison of the rates of synthesis and turnover of collagen and non-collagen proteins in adult rat periodontal tissues and skin using a microassay. Archives of oral biology 1977, 22: 655-665.
36. Beertsen W, McCulloch CA, Sodek J. The periodontal ligament: a unique, multifunctional connective tissue. Periodontology 2000 1997, 13: 20-40.
37. Shimono M, Ishikawa T, Ishikawa H, Matsuzaki H, Hashimoto S, Muramatsu T, et al. Regulatory mechanisms of periodontal regeneration. Microscopy research and technique 2003, 60: 491-502.
38. Seo BM, Miura M, Gronthos S, Bartold PM, Batouli S, Brahim J, et al. Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 2004, 364: 149-155.
39. Lekic P, Rojas J, Birek C, Tenenbaum H, McCulloch CA. Phenotypic comparison of periodontal ligament cells in vivo and in vitro. Journal of periodontal research 2001, 36: 71-79.
40. Nojima N, Kobayashi M, Shionome M, Takahashi N, Suda T, Hasegawa K. Fibroblastic cells derived from bovine periodontal ligaments have the phenotypes of osteoblasts. Journal of periodontal research 1990, 25: 179-185.
41. Caton J, Greenstein G, Zappa U. Guided tissue regeneration using Vicryl periodontal mesh. Compendium (Newtown, Pa 1992, 13: 202, 204, 206-208.
42. Martin M, Gantes B, Garrett S, Egelberg J. Treatment of periodontal furcation defects. (I). Review of the literature and description of a regenerative surgical technique. Journal of clinical periodontology 1988, 15: 227-231.
43. Groeneveld MC, Everts V, Beertsen W. Alkaline phosphatase activity in the periodontal ligament and gingiva of the rat molar: its relation to cementum formation. Journal of dental research 1995, 74: 1374-1381.
44. Yamaguchi M, Shimizu N, Shibata Y, Abiko Y. Effects of different magnitudes of tension-force on alkaline phosphatase activity in periodontal ligament cells. Journal of dental research 1996, 75: 889-894.
45. Nakashima K, Giannopoulou C, Andersen E, Roehrich N, Brochut P, Dubrez B, et al. A longitudinal study of various crevicular fluid components as markers of periodontal disease activity. Journal of clinical periodontology 1996, 23: 832-838.
46. Bernick S, Paule W, Ertl D, Nishimoto SK, Nimni ME. Cellular events associated with the induction of bone by demineralized bone. J Orthop Res 1989, 7: 1-11.
47. Reddi AH, Sullivan NE. Matrix-induced endochondral bone differentiation: influence of hypophysectomy, growth hormone, and thyroid-stimulating hormone. Endocrinology 1980, 107: 1291-1299.
48. Urist MR, DeLange RJ, Finerman GA. Bone cell differentiation and growth factors. Science (New York, NY 1983, 220: 680-686.
49. McCulloch CA, Bordin S. Role of fibroblast subpopulations in periodontal physiology and pathology. Journal of periodontal research 1991, 26: 144-154.
50. Pitaru S, McCulloch CA, Narayanan SA. Cellular origins and differentiation control mechanisms during periodontal development and wound healing. Journal of periodontal research 1994, 29: 81-94.
51. Piche JE, Carnes DL, Jr., Graves DT. Initial characterization of cells derived from human periodontia. Journal of dental research 1989, 68: 761-767.
52. Cho MI, Matsuda N, Lin WL, Moshier A, Ramakrishnan PR. In vitro formation of mineralized nodules by periodontal ligament cells from the rat. Calcified tissue international 1992, 50: 459-467.
53. Arceo N, Sauk JJ, Moehring J, Foster RA, Somerman MJ. Human periodontal cells initiate mineral-like nodules in vitro. Journal of periodontology 1991, 62: 499-503.
54. Franceschi RT. The role of ascorbic acid in mesenchymal differentiation. Nutrition reviews 1992, 50: 65-70.
55. Otsuka E, Yamaguchi A, Hirose S, Hagiwara H. Characterization of osteoblastic differentiation of stromal cell line ST2 that is induced by ascorbic acid. The American journal of physiology 1999, 277: C132-138.
56. Taylor SM, Jones PA. Multiple new phenotypes induced in 10T1/2 and 3T3 cells treated with 5-azacytidine. Cell 1979, 17: 771-779.
57. Leboy PS, Vaias L, Uschmann B, Golub E, Adams SL, Pacifici M. Ascorbic acid induces alkaline phosphatase, type X collagen, and calcium deposition in cultured chick chondrocytes. The Journal of biological chemistry 1989, 264: 17281-17286.
58. Gerstenfeld LC, Landis WJ. Gene expression and extracellular matrix ultrastructure of a mineralizing chondrocyte cell culture system. The Journal of cell biology 1991, 112: 501-513.
59. Harada S, Matsumoto T, Ogata E. Role of ascorbic acid in the regulation of proliferation in osteoblast-like MC3T3-E1 cells. J Bone Miner Res 1991, 6: 903-908.
60. Franceschi RT, Iyer BS. Relationship between collagen synthesis and expression of the osteoblast phenotype in MC3T3-E1 cells. J Bone Miner Res 1992, 7: 235-246.
61. Franceschi RT, Iyer BS, Cui Y. Effects of ascorbic acid on collagen matrix formation and osteoblast differentiation in murine MC3T3-E1 cells. J Bone Miner Res 1994, 9: 843-854.
62. Ishikawa S, Iwasaki K, Komaki M, Ishikawa I. Role of ascorbic acid in periodontal ligament cell differentiation. Journal of periodontology 2004, 75: 709-716.
63. Mimori K, Komaki M, Iwasaki K, Ishikawa I. Extracellular signal-regulated kinase 1/2 is involved in ascorbic acid-induced osteoblastic differentiation in periodontal ligament cells. Journal of periodontology 2007, 78: 328-334.
64. Adams AM, Soames JV, Searle RF. Cultural and morphological characteristics of human periodontal ligament cells in vitro. Archives of oral biology 1993, 38: 657-662.
65. Bodnar AG, Ouellette M, Frolkis M, Holt SE, Chiu CP, Morin GB, et al. Extension of life-span by introduction of telomerase into normal human cells. Science (New York, NY 1998, 279: 349-352.
66. Kamata N, Fujimoto R, Tomonari M, Taki M, Nagayama M, Yasumoto S. Immortalization of human dental papilla, dental pulp, periodontal ligament cells and gingival fibroblasts by telomerase reverse transcriptase. J Oral Pathol Med 2004, 33: 417-423.
67. Li Q, Verma IM. NF-kappaB regulation in the immune system. Nat Rev Immunol 2002, 2: 725-734.
68. Gilmore TD. The Rel/NF-kappaB signal transduction pathway: introduction. Oncogene 1999, 18: 6842-6844.
69. Gilmore TD. Introduction to NF-kappaB: players, pathways, perspectives. Oncogene 2006, 25: 6680-6684.
70. Walsh MC, Choi Y. Biology of the TRANCE axis. Cytokine & growth factor reviews 2003, 14: 251-263.
71. Suda T, Takahashi N, Udagawa N, Jimi E, Gillespie MT, Martin TJ. Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocrine reviews 1999, 20: 345-357.
72. Hofbauer LC, Khosla S, Dunstan CR, Lacey DL, Boyle WJ, Riggs BL. The roles of osteoprotegerin and osteoprotegerin ligand in the paracrine regulation of bone resorption. J Bone Miner Res 2000, 15: 2-12.
73. Kanzaki H, Chiba M, Shimizu Y, Mitani H. Dual regulation of osteoclast differentiation by periodontal ligament cells through RANKL stimulation and OPG inhibition. Journal of dental research 2001, 80: 887-891.
74. Hasegawa T, Yoshimura Y, Kikuiri T, Yawaka Y, Takeyama S, Matsumoto A, et al. Expression of receptor activator of NF-kappa B ligand and osteoprotegerin in culture of human periodontal ligament cells. Journal of periodontal research 2002, 37: 405-411.
75. Zhang D, Yang YQ, Li XT, Fu MK. [Expression of OPG and RANKL at protein level in human periodontal ligament cells and the effect of 1alpha,25(OH)(2) vitamin D(3) on the secretion of OPG protein in vitro.]. Beijing da xue xue bao Yi xue ban = Journal of Peking University 2004, 36: 646-649.
76. Yamaguchi M, Aihara N, Kojima T, Kasai K. RANKL increase in compressed periodontal ligament cells from root resorption. Journal of dental research 2006, 85: 751-756.
77. Gregory CA, Gunn WG, Peister A, Prockop DJ. An Alizarin red-based assay of mineralization by adherent cells in culture: comparison with cetylpyridinium chloride extraction. Analytical biochemistry 2004, 329: 77-84.
78. Blackburn EH. The molecular structure of centromeres and telomeres. Annual review of biochemistry 1984, 53: 163-194.
79. Konig P, Rhodes D. Recognition of telomeric DNA. Trends in biochemical sciences 1997, 22: 43-47.
80. Zakian VA. Structure and function of telomeres. Annual review of genetics 1989, 23: 579-604.
81. Greider CW, Blackburn EH. A telomeric sequence in the RNA of Tetrahymena telomerase required for telomere repeat synthesis. Nature 1989, 337: 331-337.
82. Fujita T, Otsuka-Tanaka Y, Tahara H, Ide T, Abiko Y, Mega J. Establishment of immortalized clonal cells derived from periodontal ligament cells by induction of the hTERT gene. Journal of oral science 2005, 47: 177-184.
83. Pi SH, Lee SK, Hwang YS, Choi MG, Lee SK, Kim EC. Differential expression of periodontal ligament-specific markers and osteogenic differentiation in human papilloma virus 16-immortalized human gingival fibroblasts and periodontal ligament cells. Journal of periodontal research 2007, 42: 104-113.
84. Sodek J, Batista Da Silva AP, Zohar R. Osteopontin and mucosal protection. Journal of dental research 2006, 85: 404-415.
85. Konno S, Hizawa N, Nishimura M, Huang SK. Osteopontin: a potential biomarker for successful bee venom immunotherapy and a potential molecule for inhibiting IgE-mediated allergic responses. Allergol Int 2006, 55: 355-359.
86. Horiuchi K, Amizuka N, Takeshita S, Takamatsu H, Katsuura M, Ozawa H, et al. Identification and characterization of a novel protein, periostin, with restricted expression to periosteum and periodontal ligament and increased expression by transforming growth factor beta. J Bone Miner Res 1999, 14: 1239-1249.
87. Stein GS, Lian JB, Stein JL, Van Wijnen AJ, Montecino M. Transcriptional control of osteoblast growth and differentiation. Physiological reviews 1996, 76: 593-629.
88. Zhou Y, Hutmacher DW, Sae-Lim V, Zhou Z, Woodruff M, Lim TM. Osteogenic and adipogenic induction potential of human periodontal cells. Journal of periodontology 2008, 79: 525-534.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top