跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.110) 您好!臺灣時間:2025/09/28 23:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:呂紹臺
研究生(外文):Shau-Tai Lu
論文名稱:無機層狀材料/酚醛環氧樹脂奈米複合材料在銅箔基板之製程開發與性質研究
論文名稱(外文):Synthesis and Characterizations of Inorganic Layered Materials/Novolac Cured Resin Nanocomposites for Copper-Clad Laminar
指導教授:蔡宗燕
指導教授(外文):Tsung-Yen Tsai
學位類別:博士
校院名稱:中原大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:157
中文關鍵詞:環氧樹脂奈米複材層狀材料阻燃特性
外文關鍵詞:novolac curednanocompositeslayered materialsfire-resistance
相關次數:
  • 被引用被引用:4
  • 點閱點閱:1208
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究著重於兩個部分。第一部份為製備以PK-805為無機層狀材料的一系列插層 (intercalated) 或是脫層 (exfoliated) 的酚醛環氧樹脂粘土奈米複合材料,利用雙改質劑((PI/BEN or MI/BEN) 插層至黏土中而使得高分子的特性提升,而benzalkonium chloride (BEN) 扮演相容劑的角色, 2-phenylimidazole (PI) 或是 2-methylimidazole (MI) 扮演促進劑的角色。 並且使兩者同時進入粘土的層間之中。 當兩者的比例為5:5的時候,酚醛環氧樹脂/黏土奈米複合材料表現出分散良好的黏土以及高的交聯密度。 改善的尺寸安定性與未添加改質型黏土的比較:從62.23 降到了47.83以及 45.61 ppm/C而吸水率從0.64降到了0.40,以及 0.52 %。 這些堤升的性質都是因為添加了分散良好的改質型黏土所造成的。 另一方面,不同離子交換當量(CEC)的型態黏土/酚醛環氧樹脂奈米複合材料的分散性以及對於交聯程度的影響也在這個部分探討。 CEC的範圍從72~ 312 meq/100g,高的CEC值對於黏土的分散度是不好的, 但是一旦將樹脂以及黏土表面的相容性提高, 即使是分散度不好的黏土,也會造成很高的玻璃轉移溫度 (Higher Tg) 。 在這個部份,利用廣角X-Ray粉末繞射儀以及熱重分析儀, 動態機械分析儀, 穿透式電子顯微鏡, 來鑑定一系列的複合材料, 根據這些鑑定的結果, 酚醛樹脂因為黏土添加的關係, 可以造成好的熱性質, 機械性質, 以及阻隔特性, 這些特性可以應用在印刷電路板工業上。
第二部份是在難燃上面的應用, 將層間雙氫氧化物 (LDH) 利用4,5-imidazole dicarboxylic acid 改質並且利用碳六十經過改質之後插層至天然黏土 (PK-802)之中。 以廣角X-Ray粉末繞射儀以及穿透式電子顯微鏡來鑑定無機層狀材料在酚醛環氧樹脂中的分散情形。 極限氧指數 (LOI)的增加因為上述的材料分散所造成, 當使用改質過後的LDH可以將熱釋放率從 364 降到319 kW/m. 總熱釋放率從98.67 MJ/m 降到 9.73 MJ/m, 平均熱釋放可以從163.96 kW/m降到53.99 kW/m, 而平均熱重損失可以從10.375 g/s 降到 3.96 g/s ,極限氧指數從19增加到了28 ,玻璃轉移溫度可以從124.1 增加到148.5以及131.3 oC。 這些結果顯示出來,製備出了這一系列不具有鹵素及磷系的耐燃材料對於綠色印刷電路板有很大的利用價值。
The research in this study is focused on two parts. The first part is preparations of intercalated or exfoliated novolac cured epoxy resin nanocomposites with layered silicates- (PK-805). The bi-functional modifiers (PI/BEN or MI/BEN) are used to modify the clays for improvement of the properties of polymer where benzalkonium chloride (BEN) acts as a compatibilizing agent and 2-phenylimidazole (PI) or 2-methylimidazole (MI) as the accelerators. Both the compatibilizer and accelerator (with different ratio) are simultaneously intercalated into the gallery space of pure clays to form the modified clay. The novolac cured epoxy-clay nanocomposites, which perform the well-dispersion of clay and the higher crosslinking density, are simultaneously mixing two modified agent with 5:5 mole ratios are intercalated into the clay instead of using single modified agent. The improvement in the dimensional stability is significant comparing to the pure epoxy polymer, which has the CTE of 62.23 ppm/℃ below Tg in the Z direction. In addition, the water uptake was decreased by 27.5%, i.e., from 0.64 to 0.40, and 0.52 % for PB/PK-805, and MB/PK-805 modified clays. On the other hand, different cation exchange capacity (72~300) meq/100g of modified clay/novolac cured epoxy nanocomposites are also discussed in this work (by using MB55 and PB55 as modifier). High CEC value is not good of the effect on dispersity, can decreasing of the Tg (crosslinking density) which as indicated by DMA. But the higher compatibility between epoxy resin and clay’s surface will induce the higher Tg. The properties of novolac cured epoxy/clay nanocomposites were characterized by wide-angle X-ray diffraction (WAXD), thermo-gravimetric analysis (TGA), dynamic mechanical analysis (DMA), and transmission electron microscopy (TEM) methods. According to the measurement, these novolac cured epoxy-clay nanocomposites have shown the significant improvement in the thermal, mechanical and barrier properties that are good for application of printed circuit board.
The second part is for application of flame-resistance. The layered materials such as layered double hydroxides (LDHs) (Mg-Al and Li-Al LDH) were modified by 4,5-imidazole dicarboxylic acid and the natural clays (PK-802) were modified by N-methyl pryrrolidine-fullerene. XRD and TEM indicate the exfoliations of layered materials in the polymer matrix. The increasing LOI values were due to the addition of small amount of layered materials dispersed well in the polymer matrixes. The peak heat release rate falls incorporation of the amount of LDH, the PHRR is decreased from 364 to 319 kW/m. The total heat released is decreased from 98.67 MJ/m to 9.73 MJ/m in the case of Li-Al LDH-IM 3wt%, the average loss weight rate is decreased from 10.36 g/s to 3.96 g/s, the average heat release is decreased from 163.96 kW/m to 53.99 kW/m. The fire-resistance property of nanocomposite depends on the aspect ratio or the presence of hydroxyl group and the dispersity of layered materials. The LOI increases from 19 to 28, and Tg is increased form 124.1 to 148.5 and 131.3℃, respectively. This result suggests that the novolac cured epoxy/layered double hydroxide nanocomposites might apply to the circuit board with good fire-resistance property.
Contents
中文摘要…………………………………………………………………….…………I
Abstract..……………………………............................………...…………….…..…III
謝誌……………………………………………………………………………….…..V
Contents……………………………………………………………………………...VI
List of Tables………………………………………………………………….….…...X
List of Figures……………………………………………………………………..…XI
Chapter 1 Introduction………………………………………………………….……..1
1-1 An introduction to epoxy resin………………………………………………...1
1-1-1 Briefly introduction…………………………………………..…………1
1-1-2 Important properties of epoxy resin……………………………………..2
1-1-3 Curing mechanism of epoxy resin……………………………………....3
1-1-4 Application of epoxy resin……………………………………………....4
1-2 An introduction to clay………………………………………………………...6
1-2-1 Kinds of the clay………………………………………………………...6
1-2-2 Layered charge of clay…..........................................................................7
1-2-3 Cation exchange capacity…………………………………….…….…...9
1-2-4 Other characteristics of the clay…..........................................................11
1-3 Synthesis layered materials…..........................................................................12
1-3-1 Layered double hydroxide…………………………………….……….12
1-4 Introduction of flame-retardant………………………………………………15
1-4-1 The ignition of polymers………………………………………………15
1-4-2 Theories of fire………………………………………………………...16
1-4-3 Combustion process……………………………………………………19
1-4-4 Definition of flame resistance materials……………………………….19
1-4-5 Requirements of flame-Retardant materials………………………..….20
1-5 Introduction of printed circuit board (PCB)…………………………………20
1-5-1 Briefly introduction…………………………………………………....20
1-5-2 Composition of the copper clad laminates…………………………….23
1-6 Researches on epoxy/clay nanocomposites………………………………….24
1-7 Researches on flame/resistance study………………………………………..29
1-8 Introductions of novolac cured epoxy/clay nanocomposites………………...31
1-9 Introduction of flame-resistance study based on inorganic layered
materials/novolac cured epoxy nanocomposites…………….……….……….….33
1-10 Research motive…………………………………………………………….37
Chapter 2 Experimental Section……………………………………………………...37
2-1 Synthesis and characterizations of novolac cured epoxy/clay
nanocomposites……………………………………………………………………39
2-1-1 Materials and preparations for modified clay……………………………39
2-1-2 Preparations for novolac cured epoxy/clay nanocomposites…………….40
2-1-3 Instruments and determination method…................................................42
2-1-4 Characterization of novolac cured epoxy/clay nanocomposites in copper
clad laminates………………………….……………………………………....43
2-2 Effects of different CEC clays on the morphology of bi-functional modifiers
novolac cured epoxy/ types of nanocomposites................................................…...45
2-2-1 Materials and preparations for different types of CEC clays............…...45
2-2-2 Determination of CEC…………………………………………………..46
2-2-3 Instruments and determination method…………………………………46
2-3 Synthesis and characterization of novolac cured
epoxy/modified-fullerenes-clay nanocomposites……………...…….……….……47
2-3-1 Preparation of water soluble N-methyl pryrrolidine-C60 (C60-O)….……47
2-3-2 Materials and preparations for modified clay (C60-O/PK-805,
BEN-C60-O/PK-805)……………………………………………………….….48
2-3-3 Preparations for C60-O/PK-802 and BEN-C60-O/PK-802/novolac cured
epoxy nanocomposites………………………………………………………....48
2-3-4 Instruments and determination method…………………………………49
2-4 Synthesis and characterization of novolac cured epoxy/layered double
hydroxide nanocomposites in flame-retardant study……………………………...50
2-4-1 Materials and preparations for modified layered double hydroxides……50
Section 1: Preparations of Li-Al LDH and Li-Al LDH-IM………...….50
Section 2: Preparations for Mg-Al LDH-IM……………….…………..50
Section 3: Preparations for Li-Al LDH-IM and Mg-Al LDH-IM/novolac
cured epoxy nanocomposites………………………………………..……51
Chapter 3 Result and discussions
3-1 Synthesis and characterizations of novolac cured epoxy/clay
nanocomposites……………………………………………………………………53
3-2 Effects of different CEC clays on the morphology of bi-functional modifiers
novolac cured epoxy/ types of nanocomposites……………………...……………81
3-2-1 Characterization of modified CL-5 and CL-5/novolac cured epoxy
nanocomposites…………………………………………….………………….81
3-2-2 Characterization of modified CL-42 and CL-42/novolac cured epoxy
nanocomposites………………………….…………………………………….83
3-2-3 Characterization of modified CL-120 and CL-120/novolac cured epoxy
nanocomposites………………………………………………………………..88
3-2-4 Characterization of modified CL-114 and CL-114/novolac cured epoxy
nanocomposites………………………………………………………………..93
3-3 Synthesis and Characterization of Novolac Cured
epoxy/Modified-Fullerenes-Clay Nanocomposites………………………………..99
3-4 Synthesis and characterization of novolac cured epoxy/layered double
hydroxide nanocomposites in flame-retardant study…………………………..…109
Chapter 4 Conclusions
4-1 Synthesis and Characterizations of Novolac Cured Epoxy/Clay
nanocomposites…………………………………………………………………..132
4-2 The study of Flame-Resistance on Novolac Cured Epoxy/Different Layered
materials Nanocomposites………………………………………………………..133
Chapter 5 Suggestions and future works…………………………………...…….…135
Reference……………………………………………………………………………136


List of Tables
Table 1-1 Different kind of clays………………………………………………………8
Table 2-1 Classification of copper clad laminates……………………………………21
Table 3-1 The d-Spacings of Modified PK-805 measured by XRD…………………56
Table 3-2 SG of modified PK-805…………………………………………………...59
Table 3-3 Thermal properties of series types of nanocomposites……………………79
Table 3-4 Properties of modified PK-805 in copper-clad laminar…………………...80
Table 3-5 Using of the modifier and the resulting d-spacing of each type of
modified-clay………………………………………………………………………...97
Table 3-6 Summary properties of different modified-clays………………………….99
Table 3-7 Thermal properties of each type of modified-clay/nanocomposites…......109
Table 3-8 Properties of Fire-retardancy……………………………………………..109
Table 3-9 Dynamic mechanical properties of series of composites……...................124
Table 3-10 Dynamic mechanical properties of series of composites…………….....130
Table 3-10 Fire-resistance properties of series LDH/nanocomposites compare with
novolac cured resin………………………………………………………………….131

List of Figures
FIG. 1-1 Curing mechanism of epoxy resin…………………………………………...4
FIG. 1-2 The structure of montorillonite……………………………………………..11
FIG. 1-3 The structure of layered double hydroxides………………………………..13
FIG. 1-4 Elements entering in the composition of natural and synthetic anionic
clays…………………………………………………………………………………..13
FIG. 1-5 The “vicious” triangle of fire and effects of different flame Retardants…...15
FIG. 1-6 Tetrahedron scheme of fire………………………………………………….16
FIG. 1-7 The essential requirements for a fire………………………………………..17
FIG. 1-8 Combustion of polymers……………………………………………………19
FIG. 1-9 Preparations for the novolac resin/clay in copper clad laminates…………..23
FIG. 1-10 WAXD of different curing agent and curing time of epoxy/clay
nanocomposites………………………………………………………………………25
FIG. 1-11 WAXD of different types of clay in epoxy-clay nanocomposites…………25
FIG. 1-12 WAXD of different types of epoxy resin in epoxy-clay
nanocomposites………………………………………………………………………26
FIG. 1-13 Effects of different types of matrix in epoxy-clay nanocomposites………26
FIG. 1-14 mechanical properties of epoxy-clay nanocomposites……………………27
FIG. 1-15 storage modulus and tan delta of epoxy-clay nanocomposites……………28
FIG. 1-16 Scheme of driving force concept………………………………………….28
FIG. 1-17 PHRR of epoxy-clay nanocomposites…………………………………….29
FIG. 1-18 PHRR of epoxy-clay nanocomposites…………………………………….30
FIG. 1-19 PHRR of epoxy-clay nanocomposites…………………………………….30
Scheme 2-1 Structure of the three kinds of modifiers……………………………….40
Scheme 2-2 The structure of novolac resin (A) and (B) …………………………….41
Scheme 2-3 Preparation for the novolac cured resin/clay nanocomposites………….41
Scheme 2-4 Preparation for the novolac cured resin/clay nanocomposites in
copper-clad laminates…………………………………………………………...……43
FIG. 3-1 WAXD of one modifier to the PK-805……………………………………..53
FIG. 3-2 WAXD of modified PB/PK-805……………………………………………54
FIG. 3-3 WAXD of modified MB/PK-805……………………………….…………..55
FIG. 3-4 TGA curves of one modifier to PK-805…………………………………….57
FIG. 3-5 TGA curves of two modifiers to PK-805…………………………………...58
FIG. 3-6 TGA curves of two modifiers to PK-805……………………...……………59
FIG. 3-7 FT-IR spectra of one modifier with clay……………………………………60
FIG. 3-8 FT-IR spectra of PB as modifier with clay………………………………….61
FIG. 3-9 FT-IR spectra of MB modifier with clay………………………………..…..61
FIG. 3-10 WAXD for MI/PK-805 with different ratio in novolac cured resin
nanocomposites……...……………………………………………………………….62
FIG. 3-11 WAXD for PI/PK-805 with different ratio in novolac cured resin
nanocomposites………………………………………………………………………63
FIG. 3-12 WAXD for BEN/PK-805 with different ratio in novolac cured resin
nanocomposites………………………………………………………………………63
FIG. 3-13 WAXD for PB73/PK-805 with different ratio in novolac cured resin
nanocomposites………………………………………………………………………64
FIG. 3-14 WAXD for PB37/PK-805 with different ratio in novolac cured resin
nanocomposites……………………………………………………………………....64
FIG. 3-15 WAXD for PB55/PK-805 with different ratio in novolac cured resin
nanocomposites………………………………………………………………………65
FIG. 3-16 WAXD for MB73/PK-805 with different ratio in novolac cured resin
nanocomposites………………………………………………………………………65
FIG. 3-17 WAXD for MB37/PK-805 with different ratio in novolac cured resin
nanocomposites………………………………………………………………………66
FIG. 3-18 WAXD for MB55/PK-805 with different ratio in novolac cured resin
nanocomposites…………………………………………………………………..…..66
FIG. 3-19 Storage modulus of MI/novolac cured epoxy nanocomposites…………...68
FIG. 3-20 Storage modulus of PI/novolac cured epoxy nanocomposites……………68
FIG. 3-21 Storage modulus of BEN/novolac cured epoxy nanocomposites…………69
FIG. 3-22 Storage modulus of MB55/novolac cured epoxy nanocomposites ……….69
FIG. 3-23 Storage modulus of PB55/novolac cured epoxy nanocomposites………...70
FIG. 3-24 Tan delta of MI/novolac cured epoxy nanocomposites…………………...70
FIG. 3-25 Tan delta of PI/novolac cured epoxy nanocomposites……………………71
FIG. 3-26 Tan delta of BEN/novolac cured epoxy nanocomposites…………………71
FIG. 3-27 Tan delta of MB55/novolac cured epoxy nanocomposites…………….….72
FIG. 3-28 Tan delta of PB55/novolac cured epoxy nanocomposites………………...72
FIG. 3-29 TGA curves of MI/novolac cured epoxy nanocomposites………………..73
FIG. 3-30 TGA curves of PI/novolac cured epoxy nanocomposites…………………74
FIG. 3-31 TGA curves of BEN/novolac cured epoxy nanocomposites……...………74
FIG. 3-32 TGA curves of MB55/novolac cured epoxy nanocomposites…………….75
FIG. 3-33 TGA curves of PB55/novolac cured epoxy nanocomposites……………..75
FIG. 3-34 TEM of novolac cured resin/PK-805 nanocomposites with the type of (a)
MB55/PK-805 (5K, 200nm), (b) MB55/PK-805(20K, 50nm)………………………76
FIG. 3-35 TEM of novolac cured resin/PK-805 nanocomposites with the type of (a)
MB37/PK-805 (10K, 100nm), (b) MB37/PK-805(10K, 100nm)……………………77
FIG. 3-36 TEM of novolac cured resin/PK-805 nanocomposites with the type of (a)
PB55/PK-805 (40K, 100nm), (b) PB55/PK-805(20K, 50nm)………………………77
FIG. 3-37 TEM of novolac cured resin/PK-805 nanocomposites with the type of (a)
PB37/PK-805 (5K, 200nm), (b) PB37/PK-805(10K, 100nm)………………………78
FIG. 3-38 WAXD of modified CL-5…………………………………………….......81
FIG. 3-39 WAXD of modified CL-5/novolac cured epoxy nanocomposites……..…82
FIG. 3-40 WAXD of modified CL-5/novolac cured epoxy nanocomposites………..82
FIG. 3-41 Tan delta of modified CL-5/novolac cured epoxy nanocomposites……...83
FIG. 3-42 Tan delta of modified CL-5/novolac cured epoxy nanocomposites……...84
FIG. 3-43 TEM photos of modified CL-5/novolac cured epoxy nanocomposites…..84
FIG. 3-44 WAXD of modified CL-42……………………………………………….85
FIG. 3-45 WAXD of modified CL-42/novolac cured epoxy nanocomposites………86
FIG. 3-46 WAXD of modified CL-42/novolac cured epoxy nanocomposites………86
FIG. 3-47 Tan delta of modified CL-42/novolac cured epoxy nanocomposites…….87
FIG. 3-48 Tan delta of modified CL-42/novolac cured epoxy nanocomposites…….87
FIG. 3-49 TEM photos for (a) BEN/PK-802 (50K, 100nm), (b) BEN/PK-802 (50K,
100nm), (c) MB55/PK-802 (50K, 100nm), (d) MB55/PK-802 (50K, 100nm), (e)
PB55/PK-802 (10K, 500nm), (f) PB55/PK-802 (50K, 100nm)………………….….88
FIG. 3-50 WAXD of pure CL-120 and purified CL-120 ………………………….…89
FIG. 3-51 WAXD of modified CL-120……………………………………………...89
FIG. 3-52 WAXD of modified CL-120/novolac cured epoxy nanocomposites……..90
FIG. 3-53 WAXD of modified CL 120/novolac cured epoxy nanocomposites……...91
FIG. 3-54 Tan Delta of modified CL 120/novolac cured epoxy nanocomposites…...91
FIG. 3-55 Tan Delta of modified CL 120/novolac cured epoxy nanocomposites…...92
FIG. 3-56 TEM photos of modified CL 120 /novolac cured epoxy nanocomposites..92
FIG. 3-57 WAXD of pure CL 114 and CL114 purified………………………….…..93
FIG. 3-58 WAXD of pure modified CL120……………………………………….…94
FIG. 3-59 WAXD of modified CL 114/novolac cured epoxy nanocomposites….…...94
FIG. 3-60 WAXD of modified CL 114/novolac cured epoxy nanocomposites……....95
FIG. 3-61 Tan Delta of modified CL 114/novolac cured epoxy nanocomposites……96
FIG. 3-62 Tan Delta of modified CL 114/novolac cured epoxy nanocomposites....…96
FIG. 3-63 TEM photos of modified CL 114/novolac cured epoxy nanocomposites…97
FIG.3-64 Schematic of lower type CEC of clay in novolac cured epoxy
nanocomposites……………………………………………………………………....98
FIG. 3-65 Schematic of high type CEC of clay in novolac cured epoxy nanocomposites
……………………………………………………………………………….……….98
FIG. 3-66 WAXD of pure C60 and modified C60 (C60-O)……………………………100
FIG. 3-67 WAXD of pure PK-802 and modified C60-O/PK-802 and
BEN-C60-O/PK-802……………………………………………………………..….100
FIG. 3-68 1H NMR 300 spectra of C60-O…………………………………………..101
FIG. 3-69 TGA curves of pure C60 and C60-O and C60-O/PK-802…………………102
FIG. 3-70 Digital photos of (a) fullerenes (C60) and (b) water soluble fullerenes (C60-O)
………………………………………………………………………………………103
FIG. 3-71 WAXD of C60-O/PK-802/novolac cured epoxy nanocomposites……….103
FIG. 3-72 WAXD of BEN-C60-O/PK-802/novolac cured epoxy nanocomposites…104
FIG. 3-73 TGA curves of C60-O/PK-802/novolac cured epoxy nanocomposites…..105
FIG. 3-74 TGA curves of C60-O/ novolac cured epoxy nanocomposites…………..105
FIG. 3-75 Storage modulus of C60-O-PK-802/novolac cured epoxy nanocomposites106
FIG. 3-76 Storage modulus of BEN-C60-O/PK-802/novolac cured epoxy………….107
FIG. 3-77 Tan Delta of C60-O-PK-802/novolac cured epoxy nanocomposites……..107
FIG. 3-78 Tan Delta of BEN-C60-O/PK-802/novolac cured epoxy nanocomposites.108
FIG. 3-79 TEM photos of C60-O/PK-802/novolac cured epoxy nanocomposites…..110
FIG. 3-80 WAXD of Li-Al-LDH (100℃, 4hrs)…………………………………….111
FIG. 3-81 SEM photos of Li-Al-LDH (100℃, 4hrs)………………………………..111
FIG. 3-82 WAXD of Li-Al-LDH (100℃, 24hrs)…………………………………...112
FIG. 2-83 SEM photos of Li-Al-LDH (100℃, 24hrs)…………………………...….113
FIG. 3-84 WAXD of Li-Al-LDH (100℃, 4hrs) and in novolac epoxy resin……….113
FIG. 3-85 WAXD of Li-Al-LDH (100℃, 24hrs) and in novolac epoxy resin………114
FIG. 3-86 WAXD of Li-Al-LDH (100℃, 24hrs) 3wt%/novolac cured epoxy
nanocomposites in high scanned speed……………………………………………..115
FIG. 3-87 WAXD of Li-Al-LDH (100℃, 24hrs) 3wt%/novolac cured epoxy
nanocomposites in low scanned speed………………………………………………115
FIG. 3-88 WAXD of Li-Al-LDH and Li-Al-LDH-IM………………………………116
FIG. 3-89 FT-IR spectra of Li-Al-LDH and Li-Al-LDH-IM……………………….117
FIG. 3-90 WAXD of Li-Al-LDH-IM/novolac cured epoxy nanocomposites……….117
FIG. 3-91 SEM photos of Mg-Al-LDH powder…………………………………….118
FIG. 3-92 WAXD of Mg-Al-LDH and Mg-Al-LDO and Mg-AL-LDO-IM……….119
FIG. 3-93 Storage modulus of non-modified layered materials/novolac cured epoxy
composites…………………………………………………………………………..119
FIG. 3-94 Tan Delta of non-modified layered materials/novolac cured epoxy
composites…………………………………………………………………………..120
FIG. 3-94 Tan Delta of non-modified layered materials/novolac cured epoxy
composites
FIG. 3-95 Storage modulus of Li-Al-LDH/novolac cured epoxy composites……...121
FIG. 3-96 Tan Delta of Li-Al-LDH/novolac cured epoxy composites……………..121
FIG. 3-97 Storage modulus of Li-Al-LDH-IM/novolac cured epoxy composites….122
FIG. 3-98 Tan delta of Li-Al-LDH-IM/novolac cured epoxy composites………….122
FIG. 3-99 Storage modulus of Mg-Al-LDH-IM/novolac cured epoxy composites…123
FIG. 3-100 Tan Delta of Mg-Al-LDH-IM/novolac cured epoxy composites…….....123
FIG. 3-101 TEM photos of pristine Li-Al-LDH…………………………………….125
FIG. 3-102 TEM photos of Li-Al-LDH-IM 3 wt%/novolac cured epoxy composites126
FIG. 3-103 TEM photos of Mg-Al-LDH-IM 3 wt%/novolac cured epoxy
composites…………………………………………………………………….…….126
FIG. 3-104 PHRR of Pure AB (bromo flame-retardant) and Li-Al-IM 3wt%/novolac
cured epoxy nanocomposites……………………………………………………..…127
FIG. 3-105 PHRR of Pure AB (bromo flame-retardant) and Mg-Al-IM 3wt% /novolac
cured epoxy nanocomposites………………………………………….…………….127
FIG. 2-106 Digital photos of Pure CD after combustion……………………………128
FIG. 3-107 Digital photos of Li-Al-IM 3 wt%/novolac cured epoxy nanocomposites
after combustion…………………………………………………………………….128
FIG. 3-108 Digital photos of Mg-Al-IM 3 wt%/novolac cured epoxy nanocomposites
after combustion…………………………………………………………………….129
Reference
[1] Schrade, Resins from Epichlorohydrin, Kunststoffe, 1993, 43
[2] S. Castan, U.S. Patent 211116, 1879
[3] B. Castan, U.S. Patent 518057, 1894
[4] C. Castan, U.S. Patent 2324483, 1943
[5] C. Castan, U.S. Patent 2444333, 1948
[6] W. X. Zukas, N.S. Schneider, W.J. Macknight, Plom. Mat. Sci. Eng. Proc., 1983, 49, 588
[7] J. Mijovic, J. Kin, J. Slaby, J. Appl. Polym. Sci., 1984, 39, 3449
[8] R. T. Morgan, Advance Polymer Science series, 1998, Springer –Verlag, Belin
[9] W. Zhen,L. Tie, and T. J. Pinnavaia, Chem. Mater. 1996, 8, 2200
[10] H. Kuang-Yuh, Knowledge Bridge. 2002, 30, 3
[11] K. Yano, A. Usuki, and A. Okada, J. Polym. Sci., Part A: Polym. Chem. 1997, 35, 2289.
[12] H. L. Tyan, Y. C. Liu, and K. H. Wei, Polymer 1999, 40, 4877.
[13] L. B. James, Clays Clay Miner. 2005, 50, 11-17
[14] H. V. Olphen,” Clay colloid Chemistry”, Chapter V, Wiley-Interface
publication 1997, New York
[15] P. Mati, Langmuir 2003, 19, 5502.
[16] C. E Wearer et al,eds by D.Y. Zhang. Clay Minerals. Geology Press.1973
[17] A. Usuki, M. Y.Kawasumi, A. Okada, T. Kurauchi. J. Mater. Res. 1993, 8, 1174.
[18] S. Emanuela, Clays Clay Miner. 2005, 53, 179
[19] F. J. Hingston , A review of anion adsorption. In .Adsorption of Inorganics at Solid-Liquid Interfaces. 1981
[20]洪昆煌,土壤化學,國立編譯館, 1996
[21]黃怡禎,礦物學,地球科學文教基金會, 2000
[22] H. V. Olphen,” Clay colloid Chemistry”, Chapter V, Wiley-Interface publication 1997, New York
[23] T. J. Pinnavaia, Science 1983, 220, 365.
[24]王守明,膨礦物及其加工技術,礦產保護與利用,1996, 2, 21
[25] R. M. Barrer, Clays Clay Miner. 1989, 37, 385.
[26] C. May, Y. Tanaka, Epoxy Resins: Chemistry and Technology, Marcel Dekker, New York. 1998
[27] D. Mohamed, Clays Clay Miner. 2002, 53, 250.
[28] R. Dagani, Chemical & Engineering News 1999, 25.51
[29] A. Akelah, P. Kelly, S. Qutubuddin and A. Moet, Clay Miner.
[30]金宗哲,無機抗菌材料及應用,化學工業出版社,2004
[31] A. C. D. Newman, Chemistry of clays and clay minerals. Wiley-Interscience, New York, 1987
[32] F. Leroux, J.-P. Besse Chem. Mater. 2001, 13, 3507
[33] A. DeRoy, C. Forano, E. I. Malki, J.-P. Besse In synthesis of microporous Materials. 1992, 2, 108
[34] F. Bergaya, B. K. G. Theng, G. Lagaly Hand book of clay science, Elsevier, 2006, 1
[35] F. Trifiro, A. Vaccari, Comprehensive supramolecular chemistry, 1996 , 7, 251
[36] N.N. Das, S. C. Srivastava Bulletin of Materials Scicnece 2002, 25, 283
[37] R. J. Schwarz Flame Retardancy of Polymeric Materials 1973, 2: Kuryla WC, Papa AJ, Marcel Dekker, New York.
[38]L. Frank Fire Combustion of Plastics 1990; Van Nostrand Reinhold: 21, 162,
[39]W. M. Haessler The Extinguishment of Fire 1962; Fyr Fyter Corporation: Norris Industries.
[40] E. Bair, P .K. Gallagher, M. Jaffe, Y. P. Khanna, J. J. Maurer, E. M. Pearce , R. B. Prime , D. Raucher, S. W. Shalaby, W .W. Wendlandt, B. Wunderlich Thermal Characterization of Polymeric Materials 1981;Corporate Research and Development Allied Co.: Morristown, New Jersey.
[41] 邱義雄, 中山科學研究院化學所, 無鹵難燃材料與應用技術
[42] M. J. Antal, J. H. L. Friedman, F. E. Rogers Combustion Science and Technology 1980, 21, 141
[43] E. Sacher, Polymer, 1973, 14, 91
[44] S. Muroi, H. Ishimura, M. Outsuka, J. Appl. Polym. Sci., 1986,32, 5095
[45] R. L. Miller, M.A. Oebser, Thermochimica Acta, 1980,36, 121
[46] P. N. Son, C.D. Webber, J. Appl. Polym. Sci., 1973, 17, 1305
[47] J. M. Barton, D.C. Greenfield, Brit. Polym. J., 1986, 18, 196
[48] Y. G. Lin, H. Sautereau, J.P. Pascault, J. Polym. Sci., Part A, 1986, 24,
[49] M. F. Grenie, M.-P. Bente, P. Grenier, Eur. Polym. J., 1991,27,1201
[50] M. D. Gilbert, N.S. Schneider, W. J. MacKnight, Macromolecules, 1991, 24, 360
[51] T. Guthner, B. Hammer, J. Appl. Polym. Sci., 1993, 50, 1453
[52] General Electric Co., U.S. Patent 4343731, 1980
[53] W. R. Grace Co. Conn., U.S. Patent 4797455, 1989
[54] X. Kornmanna, H. Lindbergb, L.A. Berglund Polymer 2001, 42, 4493
[55] J. F. Timmerman, B. S. Hayes, J. C. Seferis Composites Science and Technology 2002, 62, 1249
[56] A. Gua, G. Liangb Polymer Degradation and Stability 2003, 80, 383
[57] S. M. Lee, T. R. Hwang, M. G. Kang, J. W. Lee Polymer Nanocomposites 2003
[58] J. H. Park, S. C. Jana Polymer 2003, 44, 2091
[59] A. Yasmin, J. L. Abot, I. M. Daniel Scripta Materialia 2003, 49, 81
[60] B.M. Phillip and E.P. Giannelis, Chem. Mater., 1994, 6, 1719
[61] S. Wang, Y. Hua, R. Zong, Y. Tang, Z. Chenb, W. Fan Applied Clay Science, 2004, 25, 49
[62]T.-Y. Tsai, C.-H. Li, C.-C. Huang, W.-H. Cheng, C.-L. Hwang, R.-J. Wu, Adv. Mater., 2005, 17, 1769
[63]M. Zanetti, G. Camino, D. Canavese, A. B. Morgan, F. J. Lamelas, and C. A. Wilkie, Chem. Mater. 2002, 14, 189
[64] M.L. Christopher, Prestona, A. Gandara, L. Jefferson. Hopewellb, A. S. Robert, M. Zenka. Polym. Degr. and Stab. 2004, 84, 533
[65] N. Salahuddin, A. Moet, B. Hiltner, Eur. Poly. J., 2002, 38, 1477
[66] K. Takashi, H.H. Richard, Z. Xing, R.M. Briber, Polymer., 2004 45, 881
[67] S.S. Ray, K. Okamoto, M. Okamoto, Macromolecules., 2003, 36, 2355
[68] T.-Y. Tsai, S.-T. Lu, Clay Sci., 2005, 12, 74
[69] C.S. Triantafillidis, P.C. LeBaron, T.J. Pinnavaia, Chem. Mater., 14, 4088 (2002)
[70] Isilk, U. Yalmazer, G. Bayram, Polymer., 2003, 44, 6371
[71] T.-Y. Tsai, S.-J. Jong, A-C. Yeh, J.-B. Chiang, R. Fang, US patent., 2003 B2, 6548159
[72] H.-J Sue, K.-T. Gam, N. Bestaoui, N. Spurr, A. Clearfield, Chem Mater., 2004 16, 242
[73] F. Leroux, J.P. Besse, Chem. Mater., 2001, 13, 3507 (2001)
[74] A. J. Kinloch, A.C. Taylor J Mater Sci Lett 2003, 22, 1439
[75] A. Haque, M. Shamsuzzoha, F. Hussain, D. S. Dean J. Compos. Mater. 2003, 37, 1821
[76] Y. Zhang, J.H. Lee, J. Jang, C.W. Nah Composites: Part B 2004, 35, 133
[77] O. Becker, R.J. Varley, G.P. Simon Eur. Polym. J. 2004, 40, 187
[78] M. Hussain, G.P. Simon J Mater Sci Lett 2003, 23, 1471
[79] S. Wang, Y. Hua, R. Zong, Y. Tang, Z. Chen, W. Fan. Applied Clay Science 2004, 25, 49
[80] J. Wang, J. Du, J. Zhu, C. A. Wilkie. Polym. Degra. and Stab. 2002, 77, 249
[81] J. Zhu, B. Alexander, Morgan, J. L. Frank, C. A. Wilkie. Chem. Mater. 2001, 13, 3774
[82] M. Maggini and G. Scorrano J. Am. Chem. Soc. 1993, 115, 9798
[83] D. Gournis, V. Georgakilas, M. Karakassides. T. Bakas, K. Kordatos, M. Prato, M. Fanti, and F. Zerbetto. J. Am. Chem. Soc., 1998, 126, 8561
[84] F. Cavani, F. Trifiro’, A. Vaccari Catal Today 1991, 11, 197.
[85] F. Leroux, J.P. Besse Chem. Mater. 2001, 13, 3507
[86] G. Camino, A. Maffezzoli, M. Braglia, M. D. Lazzaro, M. Zammarano Polym Degrad Stab 2001, 74, 457.
[87] C-H Tseng, H-B Hsueh, C-Y Chen, Composites Science and Technology 2007, 67, 2350
[88] H-B Hsueh, C-Y Chen, Polymer 2000, 44, 5275
[89] E.P. Giannelis, R. Krishnamoorti Adv. Polym. Sci. 1999, 138, 107
[90] A. DeRoy, C. Forano, K.E. Malki, J.-P. Besse In synthesis of microporous Materials , 1992, 2, 108
[91] R. T. Coneley, Infrared Spectroscopy, 2nd ed., Allyn and Bacon: Boston, MA, 1992
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊