|
1. Yeatts, A.B. and Fisher, J.P., Bone tissue engineering bioreactors: dynamic culture and the influence of shear stress. Bone, 2011. 48(2): p. 171-181. 2. Galon, J., Fridman, W.H., and Pages, F., The adaptive immunologic microenvironment in colorectal cancer: a novel perspective. Cancer Res, 2007. 67(5): p. 1883-1886. 3. Heams, T., Selection within organisms in the nineteenth century: Wilhelm Roux's complex legacy. Prog Biophys Mol Biol, 2012. 110(1): p. 24-33. 4. Harrison, R.G., Embryonic transplantation and development of the nervous system. The Anatomical Record, 1908. 2(9): p. 385-410. 5. Carrel, A. and Ingebrigtsen, R., The production of antibodies by tissues living outside of the organism. Journal of Experimental Medicine, 1912. 15(3): p. 287-291. 6. Baker, B.M. and Chen, C.S., Deconstructing the third dimension–how 3D culture microenvironments alter cellular cues. J Cell Sci, 2012. 125(13): p. 3015-3024. 7. C. Lucas-Clerc, C.M., J.P. Campion, B. Launois and M. Nicol, Long-term culture of human pancreatic islets in an extracellular matrix: morphological and metabolic effects. Molecular and Cellular Endocrinology, 1993. 94(1): p. 9-20. 8. Liu, X., Weaver, E.M., and Hummon, A.B., Evaluation of therapeutics in three-dimensional cell culture systems by MALDI imaging mass spectrometry. Analytical chemistry, 2013. 85(13): p. 6295-6302. 9. Benien, P. and Swami, A., 3D tumor models: history, advances and future perspectives. Future Oncology, 2014. 10(7): p. 1311-1327. 10. Kwapiszewska, K., Michalczuk, A., Rybka, M., Kwapiszewski, R., and Brzózka, Z., A microfluidic-based platform for tumour spheroid culture, monitoring and drug screening. Lab on a Chip, 2014. 14(12): p. 2096-2104. 11. Matsusaki, M., Case, C.P., and Akashi, M., Three-dimensional cell culture technique and pathophysiology. Advanced drug delivery reviews, 2014. 74(5): p. 95-103. 12. Coward, S.M., Selden, C., Mantalaris, A., and Hodgson, H.J., Proliferation rates of HepG2 cells encapsulated in alginate are increased in a microgravity environment compared with static cultures. Artificial organs, 2005. 29(2): p. 152-158. 13. Gregory N. Bancroft, Vassilios I. Sikavitsas, Juliette van den Dolder, Tiffany L. Sheffield, Catherine G. Ambrose, John A. Jansen, and Mikos, A.G., Fluid flow increases mineralized matrix deposition in 3D perfusion culture of marrow stromal osteoblasts in a dose-dependent manner. PNAS, 2002. 99(20): p. 12600-12605. 14. Liu, H., Lin, J., and Roy, K., Effect of 3D scaffold and dynamic culture condition on the global gene expression profile of mouse embryonic stem cells. Biomaterials, 2006. 27(36): p. 5978-5989. 15. Vassilios I. Sikavitsas, G.N.B., Antonios G. Mikos, Formation of three-dimensional cell/polymer constructs for bone tissue engineering in a spinner flask and a rotating wall vessel bioreactor. Journal of Biomedical Materials Research, 2002. 62(1): p. 136-148. 16. Gregory N. Bancroft , V.I.S., and Antonios G. Mikos, Design of a Flow Perfusion Bioreactor System for Bone Tissue-Engineering Applications. Tissue Eng, 2003. 9(3): p. 549-563. 17. Di Carlo, D., Wu, L.Y., and Lee, L.P., Dynamic single cell culture array. Lab Chip, 2006. 6(11): p. 1445-1449. 18. Chung, B.G., Flanagan, L.A., Rhee, S.W., Schwartz, P.H., Lee, A.P., Monuki, E.S., and Jeon, N.L., Human neural stem cell growth and differentiation in a gradient-generating microfluidic device. Lab Chip, 2005. 5(4): p. 401-406. 19. Schumacher, K., Khong, Y.M., Chang, S., Ni, J., Sun, W., and Yu, H., Perfusion culture improves the maintenance of cultured liver tissue slices. Tissue Eng, 2007. 13(1): p. 197-205. 20. Lee, P.J., Hung, P.J., Rao, V.M., and Lee, L.P., Nanoliter scale microbioreactor array for quantitative cell biology. Biotechnol Bioeng, 2006. 94(1): p. 5-14. 21. Bartholomew J. Kane, M.J.Z., Martin L. Yarmush, and Mehmet Toner,, Liver-Specific Functional Studies in a Microfluidic Array of Primary Mammalian Hepatocytes. Analytical Chemistry, 2006. 78(13): p. 4291-4298. 22. M. Shin, K.M., O. Ishii, H. Terai, M. Kaazempur-Mofrad, and J. Borenstein, M.D.a.J.P.V., Endothelialized Networks with a Vascular Geometry in Microfabricated Poly(dimethyl siloxane). Biomedical Microdevices, 2004. 6(4): p. 269-278. 23. Kim, L., Vahey, M.D., Lee, H.Y., and Voldman, J., Microfluidic arrays for logarithmically perfused embryonic stem cell culture. Lab Chip, 2006. 6(3): p. 394-406. 24. Toh, Y.C., Zhang, C., Zhang, J., Khong, Y.M., Chang, S., Samper, V.D., van Noort, D., Hutmacher, D.W., and Yu, H., A novel 3D mammalian cell perfusion-culture system in microfluidic channels. Lab Chip, 2007. 7(3): p. 302-309. 25. Park, T.G., Perfusion culture of hepatocytes within galactose-derivatized biodegradable poly(lactide-co-glycolide) scaffolds prepared by gas foaming of effervescent salts. Journal of Biomedical Materials Research, 2001. 59(1): p. 127-135. 26. Freyra, A.M., Yang, Y., Chajra, H., Rousseau,C.F., Ronziere,M.F., Herbage,D., and A.J. El Haj, Optimization of Dynamic Culture Conditions: Effects on Biosynthetic Activities of Chondrocytes Grown in Collagen Sponges. tissue Eng, 2005. 11(5): p. 674-684. 27. Rath, S.N., Strobel, L.A., Arkudas, A., Beier, J.P., Maier, A.K., Greil, P., Horch, R.E., and Kneser, U., Osteoinduction and survival of osteoblasts and bone-marrow stromal cells in 3D biphasic calcium phosphate scaffolds under static and dynamic culture conditions. J Cell Mol Med, 2012. 16(10): p. 2350-2361. 28. Hung, P.J., Lee, P.J., Sabounchi, P., Aghdam, N., Lin, R., and Lee, L.P., A novel high aspect ratio microfluidic design to provide a stable and uniform microenvironment for cell growth in a high throughput mammalian cell culture array. Lab Chip, 2005. 5(1): p. 44-48. 29. Frangos, J.A, Hillsley, M.V., Review: Bone Tissue Engineering: The Role of Interstitial Fluid Flow. Biotechnology and Bioengineernign, 1993. 43(7): p. 573-581. 30. Leclerc, E., David, B., Griscom, L., Lepioufle, B., Fujii, T., Layrolle, P., and Legallaisa, C., Study of osteoblastic cells in a microfluidic environment. Biomaterials, 2006. 27(4): p. 586-595. 31. Manuela E. Gomes, V.I.S., Esfandiar Behravesh,Rui L. Reis,Antonios G. Mikos, Effect of flow perfusion on the osteogenic differentiation of bone marrow stromal cells cultured on starch-based three-dimensional scaffolds. Journal of Biomedical Materials Research, 2003. 67(1): p. 87-95. 32. Wei Gu, X.Z., Nobuyuki Futai, Brenda S. Cho, and Shuichi Takayama, Computerized microfluidic cell culture using elastomeric channels and Braille displays. PNAS, 2004. 101(45): p. 15861-15866. 33. Brunette, D.M., Chehroudi, B., The Effects of the Surface Topography of Micromachined Titanium Substrata on Cell Behavior in Vitro and in Vivo. J Biomech Eng, 1999. 121(1): p. 49-57. 34. Akira Horikawa , K.O., Kozo Sato and Minoru Sato, Morphological Changes in Osteoblastic Cells (MC3T3-E1) due to Fluid Shear Stress : Cellular Damage by Prolonged Application of Fluid Shear Stress. The Tohoku Journal of Experimental Medicine, 2000. 191(3): p. 127-137. 35. Hillsley, M.V , Frangos, J.A., Alkaline Phosphatase in Osteoblasts is Down-Regulated by Pulsatile Fluid Flow. Calcified Tissue International, 1996. 60(1): p. 48-53. 36. Toh, Y.C., Lim, T.C., Tai, D., Xiao, G., van Noort, D., and Yu, H., A microfluidic 3D hepatocyte chip for drug toxicity testing. Lab Chip, 2009. 9(14): p. 2026-2035. 37. Huang, H., Oizumi, S., Kojima, N., Niino, T., and Sakai, Y., Avidin-biotin binding-based cell seeding and perfusion culture of liver-derived cells in a porous scaffold with a three-dimensional interconnected flow-channel network. Biomaterials, 2007. 28(26): p. 3815-3823. 38. Sugiura, S., Edahiro, J., Kikuchi, K., Sumaru, K., and Kanamori, T., Pressure-driven perfusion culture microchamber array for a parallel drug cytotoxicity assay. Biotechnol Bioeng, 2008. 100(6): p. 1156-1165. 39. Miki, T., Ring, A., and Gerlach, J., Hepatic differentiation of human embryonic stem cells is promoted by three-dimensional dynamic perfusion culture conditions. Tissue Eng Part C Methods, 2011. 17(5): p. 557-568. 40. Wu, M.H., Huang, S.B., and Lee, G.B., Microfluidic cell culture systems for drug research. Lab Chip, 2010. 10(8): p. 939-956. 41. Jeong, J.-C., Lee, B.-T., Yoon, C.-H., Kim, H.-M., and Kim, C.-H., Effects of Drynariae rhizoma on the proliferation of human bone cells and the immunomodulatory activity. Pharmacological research, 2005. 51(2): p. 125-136. 42. Wong, R.W., Rabie, B., Bendeus, M., and Hägg, U., The effects of Rhizoma Curculiginis and Rhizoma Drynariae extracts on bones. Chinese medicine, 2007. 2(1): p. 13. 43. Chen, L.l., Lei, L.h., Ding, P.h., Tang, Q., and Wu, Y.m., Osteogenic effect of Drynariae rhizoma extracts and Naringin on MC3T3-E1 cells and an induced rat alveolar bone resorption model. Archives of oral biology, 2011. 56(12): p. 1655-1662. 44. Wu, J.B., Fong, Y.C., Tsai, H.Y., Chen, Y.F., Tsuzuki, M., and Tang, C.H., Naringin-induced bone morphogenetic protein-2 expression via PI3K, Akt, c-Fos/c-Jun and AP-1 pathway in osteoblasts. European journal of pharmacology, 2008. 588(2): p. 333-341. 45. Habauzit, V., Sacco, S.M., Gil-Izquierdo, A., Trzeciakiewicz, A., Morand, C., Barron, D., Pinaud, S., Offord, E., and Horcajada, M.-N., Differential effects of two citrus flavanones on bone quality in senescent male rats in relation to their bioavailability and metabolism. Bone, 2011. 49(5): p. 1108-1116. 46. Wong, R.W.K. and Rabie, A.B.M., Bone induction using hydroxymethylglutaryl coenzyme A (HMG-CoA) reductase inhibitors. Hong Kong Dental Journal, 2007. 4(1): p. 15-21. 47. Wong, R. and Rabie, A., Effect of naringin on bone cells. Journal of Orthopaedic Research, 2006. 24(11): p. 2045-2050. 48. Wang, E.A., Rosen, V., Cordes, P., Hewick, R.M., Kriz, M.J., Luxenberg, D.P., Sibley, B.S., and Wozney, J.M., Purification and characterization of other distinct bone-inducing factors. Proceedings of the National Academy of Sciences, 1988. 85(24): p. 9484-9488. 49. Riley, E.H., Lane, J.M., Urist, M.R., Lyons, K.M., and Lieberman, J.R., Bone morphogenetic protein-2: biology and applications. Clinical Orthopaedics and Related Research®, 1996. 324(1): p. 39-46. 50. O'Neill, T., Grafting of acrylic acid onto radiation‐peroxidized polypropylene film in the presence of ferrous ion. Journal of Polymer Science Part A: Polymer Chemistry, 1972. 10(2): p. 569-580. 51. Wong, R. and Rabie, A., Effect of Bio-Oss® Collagen and Collagen matrix on bone formation. The open biomedical engineering journal, 2010. 4(2): p. 71-76. 52. Katagiri, T., Yamaguchi, A., Komaki, M., Abe, E., Takahashi, N., Ikeda, T., Rosen, V., Wozney, J.M., Fujisawa-Sehara, A., and Suda, T., Bone morphogenetic protein-2 converts the differentiation pathway of C2C12 myoblasts into the osteoblast lineage. The Journal of cell biology, 1994. 127(6): p. 1755-1766. 53. Ang, E.S., Yang, X., Chen, H., Liu, Q., Zheng, M.H., and Xu, J., Naringin abrogates osteoclastogenesis and bone resorption via the inhibition of RANKL-induced NF-kappaB and ERK activation. FEBS Lett, 2011. 585(17): p. 2755-2762. 54. Li, N., Jiang, Y., Wooley, P.H., Xu, Z., and Yang, S.Y., Naringin promotes osteoblast differentiation and effectively reverses ovariectomy-associated osteoporosis. J Orthop Sci, 2013. 18(3): p. 478-485. 55. Fan, J., Li, J., and Fan, Q., Naringin promotes differentiation of bone marrow stem cells into osteoblasts by upregulating the expression levels of microRNA-20a and downregulating the expression levels of PPARgamma. Mol Med Rep, 2015. 12(3): p. 4759-4765. 56. Li, L., Zeng, Z., and Cai, G., Comparison of neoeriocitrin and naringin on proliferation and osteogenic differentiation in MC3T3-E1. Phytomedicine, 2011. 18(11): p. 985-989. 57. Peng-Zhang, Dai, K, Yan, S., Yan, W., Chen, D., and Xu, Z., Effects of naringin on the proliferation and osteogenic differentiation of human bone mesenchymal stem cell. European Journal of Pharmacology, 2009. 607(3): p. 1-5. 58. Pu, P., Gao, D.-M., Mohamed, S., Chen, J., Zhang, J., Zhou, X.-Y., Zhou, N.-J., Xie, J., and Jiang, H., Naringin ameliorates metabolic syndrome by activating AMP-activated protein kinase in mice fed a high-fat diet. Archives of biochemistry and biophysics, 2012. 518(1): p. 61-70. 59. Wayne Elwood , J.O.Lotvall., Peter Jo Barnes, and K. Fan Chung, Effect of Dexamethasone and Cyclosporin A on Allergen-induced Airway Hyperresponsiveness and Inflammatory Cell Responses in Sensitized Brown-Norway Rats. American Journal of Respiratory and Critical Care Medical, 1992. 145(6): p. 1289-1294. 60. Rickard, D.J., Sullivan,T.A., Shenker, B.J., Leboy, P.S., and Kazhdan, I., Induction of Rapid Osteoblast Differentiation in Rat Bone Marrow Stromal Cell Cultures by Dexamethasone and BMP-2. Developmental Biology, 1994. 161(1): p. 218-228. 61. Agamemnon E.Grigoriadis, Johan N.M.Heersche., and Jane E. Aubin, Differentiation of Muscle, Fat, Cartilage, and Bone from Progenitor Cells Present in a Bone-derived Clonal Cell Population: Effect of Dexamethasone. Journal of Cell Biology, 1988. 217(7): p. 2139-2151. 62. Phoebe S. Leboy, Jon.N.Beresford., Carole Devlin, and Maureen E. Owen, Dexamethasone Induction of Osteoblast mRNAs in Rat Marrow Stromal Cell Cultures. Journal of Celluar Physiology, 1991. 146(3): p. 370-378. 63. Olivia Fromigue´ , Pierre.J.Marie., Abderrahim Lomri, Differential effects of transforming growth factor β2, dexamethasone and 1,25-duhydroxyvitamin D on human bone marrow stromal cells. Cytokine, 1997. 9(8): p. 613-623. 64. Jorgensen, N.R., Henriksen, Z., Sorensen, O.H., and Civitelli, R., Dexamethasone, BMP-2, and 1,25-dihydroxyvitamin D enhance a more differentiated osteoblast phenotype: validation of an in vitro model for human bone marrow-derived primary osteoblasts. Steroids, 2004. 69(4): p. 219-226. 65. Coelho,M.J., Fernandes,M.H., Human bone cell cultures in biocompatibility testing. Part II: effect of ascorbic acid, β-glycerophosphate and dexamethasone on osteoblastic differentiation. biomaterials, 2000. 21(11): p. 1095-1102. 66. Beresford,J.N., Joyner,C.J., Devlin,C., Triffitt,J.T., The effects of dexamethasone and 1,25-dihydroxyvitamin D3 on osteogenic differentiation of human marrow stromal cells in vitro. Arch Oral Biol, 1994. 39(11): p. 941-947. 67. Mikami, Y., Omoteyama, K., Kato, S., and Takagi, M., Inductive effects of dexamethasone on the mineralization and the osteoblastic gene expressions in mature osteoblast-like ROS17/2.8 cells. Biochem Biophys Res Commun, 2007. 362(2): p. 368-373. 68. Jane B. Lian, V.S., Fauzia Aslam, Baruch Frenkei, Jack Green, Micheal Hamrah, Gary S. Stein, and Janet L. Stein, Species-Specific Glucocorticoid and 1,25Dihydroxyvitamin D Responsiveness in Mouse MC3T3-E1 Osteoblasts: Dexamethasone Inhibits Osteoblast Differentiation and Vitamin D DownRegulates Osteocalcin Gene Expression. Endocrinology, 1997. 138(5): p. 2117-2127. 69. Atmani, H., Chappard, D., and Basle, M.F., Proliferation and differentiation of osteoblasts and adipocytes in rat bone marrow stromal cell cultures: effects of dexamethasone and calcitriol. J Cell Biochem, 2003. 89(2): p. 364-372. 70. Vassilios I. Sikavitsas, Grogory.N.Bancroft., Heidi L. Holtorf, John A. Jansen, and Antonios G. Mikos, Mineralized matrix deposition by marrow stromal osteoblasts in 3D perfusion culture increases with increasing fluid shear forces. PNAS, 2003. 100(25): p. 14683-14688. 71. Astrid D. Bakker, K.S., Jenneke Klein-Nulend, Elisabeth H. Burger, The production of nitric oxide and prostaglandin E2 by primary bone cells is shear stress dependent. journal of Biomechanics, 2001. 34(5): p. 671-677. 72. Fredrick M. Pavalko, Neal.X.Chen., Charles H. Turner, David B. Burr, Simon Atkinson, Yeou-Fang Hsieh, Jinya Qiu, and Randall L. Duncan, Fluid shear-induced mechanical signaling in MC3T3-E1 osteoblasts requires cytoskeleton-integrin interactions. American Journal of Physiology Cell Physiology, 1998. 275(6): p. 1591-1601. 73. Holtorf, H.L., Jansen, J.A., and Mikos, A.G., Flow perfusion culture induces the osteoblastic differentiation of marrow stroma cell-scaffold constructs in the absence of dexamethasone. J Biomed Mater Res A, 2005. 72(3): p. 326-334. 74. Kathleen M. Reich, Todd.N.McAllister., Sivaramaprasad Gudi, and John A. Frangos, Activation of G Proteins Mediates Flow-Induced Prostaglandin E2 Production in Osteoblasts. Endocrinology, 1997. 138(3): p. 1014-1018. 75. Stein, G.S., Lian, J.B., Stein, J.L., Van Wijnen, A.J., and Montecino, M., Transcriptional control of osteoblast growth and differentiation. Physiological reviews, 1996. 76(2): p. 593-629. 76. Ko, Y.G., Kim, Y.H., Park, K.D., Lee, H.J., Lee, W.K., Dal Park, H., Kim, S.H., Lee, G.S., and Ahn, D.J., Immobilization of poly (ethylene glycol) or its sulfonate onto polymer surfaces by ozone oxidation. Biomaterials, 2001. 22(15): p. 2115-2123. 77. Yu, H., Gu, W., Li, N., Zhang, F., Liu, X., and Wei, H., Research Progress of Naringin. Hubei Agricultural Sciences, 2011. 8(1): p. 5-5 78. Ho, M.H., Kuo, P.Y., Hsieh, H.J., Hsien, T.Y., Hou, L.T., Lai, J.Y., and Wang, D.M., Preparation of porous scaffolds by using freeze-extraction and freeze-gelation methods. Biomaterials, 2004. 25(1): p. 129-138. 79. Kitagawa, T., Yamaoka, T., Iwase, R., and Murakami, A., Three-dimensional cell seeding and growth in radial-flow perfusion bioreactor for in vitro tissue reconstruction. Biotechnol Bioeng, 2006. 93(5): p. 947-954. 80. Kathleen M. Reich, Carol. V. Gay., and John A. Frangos Fluid Shear Stress as a Mediator of Osteoblast Cyclic Adenosine Monophosphate Production. Journal of Celluar Physiology, 1990. 143(1): p. 100-104. 81. McCoy, R.J., Jungreuthmayer, C., and O'Brien, F.J., Influence of flow rate and scaffold pore size on cell behavior during mechanical stimulation in a flow perfusion bioreactor. Biotechnol Bioeng, 2012. 109(6): p. 1583-1594. 82. Liu, H., Yazici, H., Ergun, C., Webster, T.J., and Bermek, H., An in vitro evaluation of the Ca/P ratio for the cytocompatibility of nano-to-micron particulate calcium phosphates for bone regeneration. Acta Biomater, 2008. 4(5): p. 1472-1479. 83. Rey, C., Freche, M., Heughebaert, M., Heughebaert, J.C., Lacout, J.L., Lebugle, A., Szilagyi, J., and Vignoles,M., Apatite Chemistry in Biomaterial Preparation, Shaping and Biological Behaviour. Bioceramics, 1991.1(1): p. 57-64. 84. Wong, M.M., Rao, L.G., Hao, L., Lynn Hamilton, Jeffrey Tong, William Sturtridge, Robert McBroom, Jane E. Aubin, and Timothy M. Murry, Long-Term Effects of Physiologic Concentrations of Dexamethasone on Human Bone-Derived Cells. Journal of Bone and Mineral Research, 1990. 5(8): p. 803-813. 85. 胡新永、呂原、楊華清、耿同超, 不同濃度地塞迷松對成骨細胞骨鈣素基因表達和細胞增殖的影響. 中國康復醫學雜誌, 2007. 22(10): p. 899-903. 86. Walsh,S., .Jordan, J.R., Jefferiss, C., Stewart.K, and Beresford,J. N., High concentrations of dexamethasone suppress the proliferation but not the differentiation or further maturation of human osteoblast precursors in vitro: relevance to glucocorticoid-induced osteoporosis. Rheumatology, 2001. 40(1): p. 74-83.
|