跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.23) 您好!臺灣時間:2025/10/26 05:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:洪銘謙
研究生(外文):Hung, Ming-Chien
論文名稱:第五代蜂巢式系統領航訊號汙染抑制方法之研究與模擬
論文名稱(外文):A Study on Pilot Contamination Suppression Methods for 5G Cellular Mobile Radio Communication Systems
指導教授:黃家齊黃家齊引用關係
指導教授(外文):Huang, Chia-Chi
口試委員:黃家齊吳文榕陳紹基
口試委員(外文):Huang, Chia-ChiWu, Wen-RongChen, Sau-Gee
口試日期:2015-07-29
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電信工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:64
中文關鍵詞:第五代行動通訊系統巨量天線通道估計領航訊號汙染
外文關鍵詞:5G communicationcellular systemmassive antennachannel estimationpilot contamination
相關次數:
  • 被引用被引用:0
  • 點閱點閱:224
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
對於第五代蜂巢式系統通道估計時所面臨的領航訊號汙染問題,在本篇論文當中,我們提出了兩種有效的疊代式通道估計方法。因為領航訊號數目的限制,如果它們在不同的細胞中重複的使用,就會產生領航訊號汙染問題。我們所提出的的兩種疊代式方法是在疊代時分別只使用資料訊號、將領航訊號和資料訊號共用兩種不同方法來做通道估計。由於我們是採取領航訊號和資料訊號疊加的方式傳送訊號,所以在做通道估計時資料訊號也會成為干擾,我們所提出的方法可以讓資料訊號不再只是干擾而是對於通道估計有所幫助。模擬的結果顯示,我們所提出的方法能夠在適當的疊代次數下就到達理想的位元誤碼率。
In this thesis, we propose two kinds of iterative channel estimation method to suppress the pilot contamination phenomenon in 5G cellular mobile radio communication systems. Due to pilot sequence reuse in different cells, the estimated channel would be contaminated by neighboring cells which use the same pilot. To solve the pilot contamination problems caused by pilot sequence reuse, we first use estimated data sequence as a pilot signal to execute iterative channel estimation. Secondly, as the pilot and data sequences are transmitted in a combined manner, our second proposed method utilizes data sequence as an auxiliary pilot signal in addition to utilizing the orthogonal pilot signal when executing channel estimation. Our simulation results show that these methods can achieve the required BER performance within a acceptable number of iterations.
Contents
中文摘要 i
ABSTRACT ii
誌謝 iii
List of Figures vii
List of Tables ix
1 Introduction 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Massive MIMO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.1 Massive MIMO channel state information . . . . . . . . . . . . . . 4
1.2.2 Pilot contamination . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2 System Architecture 7
2.1 Uplink Transmission Structure . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Proposed 5G Channel Model . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Generalized Orthogonal Sequence . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.1 Characteristic of Generalized Orthogonal Sequence . . . . . . . . . 12
2.3.2 Generate Binary Generalized Orthogonal Sequences . . . . . . . . . 13
2.4 Gold Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.1 Generate Gold Sequence . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.2 Characteristic of Gold Sequence . . . . . . . . . . . . . . . . . . . . 16
3 Uplink Channel Estimation and Data Detection 18
3.1 Uplink Communication Scheme . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Channel Estimation and Data Detection in Uplink Communication . . . . 20
3.2.1 Uplink with Generalized Orthogonal Sequence . . . . . . . . . . . . 20
3.2.2 Uplink with Gold Sequence . . . . . . . . . . . . . . . . . . . . . . 24
3.3 Impact of Pilot to Data Power Ratio . . . . . . . . . . . . . . . . . . . . . 27
3.3.1 Impact of P2DR with Generalized Orthogonal Sequence . . . . . . 27
3.3.2 Impact of P2DR with Gold Sequence . . . . . . . . . . . . . . . . . 36
4 Pilot Contamination Suppression Scheme 40
4.1 Proposed Pilot Contamination Suppression Scheme . . . . . . . . . . . . . 40
4.1.1 Proposed Data-Based Channel Estimation Scheme . . . . . . . . . 41
4.1.2 Proposed Data-Assisted Channel Estimation Scheme . . . . . . . . 44
4.2 Performance Improving Methods for Proposed Schemes . . . . . . . . . . . 47
4.2.1 Time Advance for cluster . . . . . . . . . . . . . . . . . . . . . . . 47
4.2.2 Channel Threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5 Simulation Results 52
5.1 Comparison of Different Methods . . . . . . . . . . . . . . . . . . . . . . . 53
5.2 Comparison of Different Window Size . . . . . . . . . . . . . . . . . . . . . 55
5.3 Channel Decision &; Average Power Change . . . . . . . . . . . . . . . . . 57
5.4 Soft Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6 Conclusion 61
References 62
References


[1]Osseiran, V. Braun, T. Hidekazu, P. Marsch, H. Schotten, H. Tullberg, M. A. Uusitao and M.Schellmann, “The Foundation of the Mobile and Wireless Communications System for 2020 and beyond,” VTC 2003.

[2]G. Wunder et al, “5GNOW: Challenging the LTE Design Paradigms of Orthogonality and Synchronicity,” Mobile and Wireless Comm. Systems for 2020 and beyond Workshop, IEEE VTC, Spring, 2013.

[3]J. G. Andrews et al., “What Will 5G Be?, ” IEEE Journal on Selected Areas in Commu-nications, vol. 32, no. 6, pp. 1065-1082, Jun. 2014.

[4]E. Dahlman, S. Parkwall, J. Skold, and P. Beming, 3G Evolution : HSPA and LTE For Mobile Broadband, 2nd edition. Elsevier, 2008.

[5]X. Gao, F. Tufvesson, O. Edfors, and F. Rusek, “Measured Propagation Characteristics for very-large MIMO at 2.6 GHz,” in Proc. 46th Annual Asilo-mar Conference on Signals, Systems, and Computers, Pacific Grove, California, USA, Nov. 2012.

[6]J. Hoydis, C. Hoek, T. Wild, and S. ten Brink, “Channel Measurements for Large antenna arrays, ” in Proc. IEEE International Symposium on Wireless Communication Systems (ISWCS), Paris, France, Aug. 2012.

[7]“Mobile and wireless communications Enablers for the 2020 Information Society,” EU FP7 ICT-317669-METIS, www.metis2020.com

[8]T. L. Marzetta, “Noncooperative cellular wireless with unlimited numbers of base station antennas,” IEEE Transactions on Wireless Communications, vol. 9, no. 11, pp. 3590–3600, 2010.

[9]H. Q. Ngo, E. G. Larsson, and T. L. Marzetta, “Energy and Spectral Efficien-cy of Very Large Multiuser MIMO Systems,” IEEE Transactions on Communications, vol. 61, no. 4, pp. 1436–1449, 2013.

[10]J. Jose, A. Ashikhmin, T. Marzetta, and S. Vishwanath, “Pilot Contamination Problem in Multi-cell TDD Systems,” in Proc. IEEE International Symposium on Information Theory, pp.2184-2188, July. 2009.

[11]Y. Azar, G. N. Wong, K. Wang, R. Mayzus, J. K. Schulz, H. Zhao, F. Gutierrez, D. Hwang, and T.S. Rappaport, “28 GHz propagation measurements for outdoor cellular communications using steerable beam antennas in New York City,” in Proc. IEEE ICC, 2013

[12]M. K. Samimi, K. Wang, Y. Azar, G. N. Wong, R. Mayzus, H. Zhao, J. K. Schulz, S. Sun, F. Gutierrez, and T. S. Rappaport, “28 GHz angle of arrival and angle of departure analy-sis for outdoor cellular communications using steerable beam antennas in New York City,” in Proc. IEEE VTC, 2013.

[13]S. Sun and T. S. Rappaport, “Multi-beam antenna combining for 28 GHz cellular link improvement in urban environments,” in Proc. IEEE Globecom, Dec. 2013.

[14]M. K. Samimi, K. Wang, Y. Azar, G. N. Wong, R. Mayzus, H. Zhao, J. K. Schulz, S. Sun, F. Gutierrez, and T. S. Rappaport, “28 GHz angle of arrival and angle of departure analy-sis for outdoor cellular communications using steerable beam antennas in New York City,” in Proc. IEEE VTC, 2013.

[15]G. R. MacCartney, Jr., J. Zhang, S. Nie, and T. S. Rappaport, “Path loss models for 5G millimeter wave propagation channels in urban microcells,” in Proc. IEEE Globecom, Dec. 2013.

[16]M. R. Akdeniz, Y. Liu, S. Sun, S. Rangan, T. S. Rappaport, and E. Erkip, “Millimeter wave channel modeling and cellular capacity evaluation,” IEEE Journal on Sel. Areas in Communications, Sep. 2014.

[17]A.A.M. Saleh and R.A. Valenzuela, “A Statistical Model for Indoor Multipath Propaga-tion,” IEEE Journal on Selected Areas in Communications, vol. 5, no.2, pp.128-137, Feb. 1987.

[18]P. Z. Fan, N. Suehiro, N. Kuroyanagi, and X. M. Deng, “A Class of Binary Sequences with Zero Correlation Zone,” IEE Electron. Lett., vol.35, no,10, pp.777-779, 1999.

[19]P.Fan and H.Li, “Generalized Orthogonal Sequence and Their Applications in Synchro-nous CDMA Systems,” IEICE Transactions on Fundamentals of Electronics, Communi-cations and Computer Sciences, Vol.E83-A, No.11, pp.2054-2069, Nov 2000.

[20]J.Ma and P.Li, “Data-Aided Channel Estimation in Large Antenna Systems,” IEEE Trans. Signal Processing, vol.62, no.12, pp. 3111-3124, Jun 2014.

[21]J.Jose , A.Ashikhmin , T.Marzetta , and S.Vishwanath, “Pilot Contamination and Pre-coding in Multi-Cell TDD Systems,” IEEE Trans. Wireless Communications, vol. 10,no. 8, pp. 2640-2651, August 2011.

[22]E.H.Dinan and B.Jabbari, Spreading codes for direct sequence CDMA and wideband CDMA cellular network, IEEE Communications Mag, Vol.36, no.9, pp.48-54, Sept. 1998.

[23]A.J. Viterbi, CDMA-Principles of Spread Spectrum Communication. Harlow: Addi-son-Wesley, 1995.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊