|
1. Raman, C. V., A New Radiation. 1928. 2.Fleischmann, M.; Hendra, P. J.; McQuillan, A. J., Raman Spectra of Pyridine Adsorbed at a Silver Electrode. Chemical Physics Letters 1974, 26, 163-166. 3.Jeanmaire, D. L.; Van Duyne, R. P., Surface Raman Spectroelectrochemistry: Part I. Heterocyclic, Aromatic, and Aliphatic Amines Adsorbed on the Anodized Silver Electrode. Journal of electroanalytical chemistry and interfacial electrochemistry 1977, 84, 1-20. 4.Albrecht, M. G.; Creighton, J. A., Anomalously Intense Raman Spectra of Pyridine at a Silver Electrode. Journal of the american chemical society 1977, 99, 5215-5217. 5.Moskovits, M., Surface-Enhanced Spectroscopy. Reviews of modern physics 1985, 57, 783. 6.Arenas, J. F.; López Tocón, I.; Otero, J. C.; Marcos, J. I., Charge Transfer Processes in Surface-Enhanced Raman Scattering. Franck-Condon Active Vibrations of Pyridine. The Journal of Physical Chemistry 1996, 100, 9254-9261. 7.Kneipp, K.; Kneipp, H.; Itzkan, I.; Dasari, R. R.; Feld, M. S., Ultrasensitive Chemical Analysis by Raman Spectroscopy. Chemical reviews 1999, 99, 2957-2976. 8.Puppels, G.; De Mul, F.; Otto, C.; Greve, J.; Robert-Nicoud, M.; Arndt-Jovin, D.; Jovin, T., Studying Single Living Cells and Chromosomes by Confocal Raman Microspectroscopy. Nature 1990, 347, 301. 9.Tian, Z., Surface‐Enhanced Raman Spectroscopy: Advancements and Applications. Journal of Raman Spectroscopy 2005, 36, 466-470. 10.Eustis, S.; El-Sayed, M. A., Why Gold Nanoparticles Are More Precious Than Pretty Gold: Noble Metal Surface Plasmon Resonance and Its Enhancement of the Radiative and Nonradiative Properties of Nanocrystals of Different Shapes. Chemical society reviews 2006, 35, 209-217. 11.Le Ru, E.; Blackie, E.; Meyer, M.; Etchegoin, P. G., Surface Enhanced Raman Scattering Enhancement Factors: A Comprehensive Study. The Journal of Physical Chemistry C 2007, 111, 13794-13803. 12.Schlücker, S., Surface‐Enhanced Raman Spectroscopy: Concepts and Chemical Applications. Angewandte Chemie International Edition 2014, 53, 4756-4795. 13.Wang, Z.; Zong, S.; Wu, L.; Zhu, D.; Cui, Y., SERS-Activated Platforms for Immunoassay: Probes, Encoding Methods, and Applications. Chemical reviews 2017, 117, 7910-7963. 14.Sheng, R.; Ni, F.; Cotton, T. M., Determination of Purine Bases by Reversed-Phase High-Performance Liquid Chromatography Using Real-Time Surface-Enhanced Raman Spectroscopy. Analytical chemistry 1991, 63, 437-442. 15.Grubisha, D. S.; Lipert, R. J.; Park, H. Y.; Driskell, J.; Porter, M. D., Femtomolar Detection of Prostate-Specific Antigen: An Immunoassay Based on Surface-Enhanced Raman Scattering and Immunogold Labels. Analytical chemistry 2003, 75, 5936-5943. 16.Kneipp, K.; Kneipp, H.; Kartha, V. B.; Manoharan, R.; Deinum, G.; Itzkan, I.; Dasari, R. R.; Feld, M. S., Detection and Identification of a Single DNA Base Molecule Using Surface-Enhanced Raman Scattering (SERS). Physical Review E 1998, 57, R6281. 17.Mohs, A. M.; Mancini, M. C.; Singhal, S.; Provenzale, J. M.; Leyland-Jones, B.; Wang, M. D.; Nie, S., Hand-Held Spectroscopic Device for in Vivo and Intraoperative Tumor Detection: Contrast Enhancement, Detection Sensitivity, and Tissue Penetration. Analytical chemistry 2010, 82, 9058-9065. 18.Han, Z.; Liu, H.; Meng, J.; Yang, L.; Liu, J.; Liu, J., Portable Kit for Identification and Detection of Drugs in Human Urine Using Surface-Enhanced Raman Spectroscopy. Analytical chemistry 2015, 87, 9500-9506. 19.Qian, X.; Li, J.; Nie, S., Stimuli-Responsive Sers Nanoparticles: Conformational Control of Plasmonic Coupling and Surface Raman Enhancement. Journal of the American Chemical Society 2009, 131, 7540-7541. 20.Wang, P.; Wu, L.; Lu, Z.; Li, Q.; Yin, W.; Ding, F.; Han, H., Gecko-Inspired Nanotentacle Surface-Enhanced Raman Spectroscopy Substrate for Sampling and Reliable Detection of Pesticide Residues in Fruits and Vegetables. Analytical chemistry 2017, 89, 2424-2431. 21.Chen, J.; Huang, Y.; Kannan, P.; Zhang, L.; Lin, Z.; Zhang, J.; Chen, T.; Guo, L., Flexible and Adhesive Surface Enhance Raman Scattering Active Tape for Rapid Detection of Pesticide Residues in Fruits and Vegetables. Analytical chemistry 2016, 88, 2149-2155. 22.Betz, J. F.; Wei, W. Y.; Cheng, Y.; White, I. M.; Rubloff, G. W., Simple SERS Substrates: Powerful, Portable, and Full of Potential. Physical Chemistry Chemical Physics 2014, 16, 2224-2239. 23.Gates, B. D.; Xu, Q.; Stewart, M.; Ryan, D.; Willson, C. G.; Whitesides, G. M., New Approaches to Nanofabrication: Molding, Printing, and Other Techniques. Chemical reviews 2005, 105, 1171-1196. 24.Li, S.; Peyrade, D.; Natali, M.; Lebib, A.; Chen, Y.; Ebels, U.; Buda, L.; Ounadjela, K., Flux Closure Structures in Cobalt Rings. Physical Review Letters 2001, 86, 1102. 25.Pokroy, B.; Epstein, A. K.; Persson-Gulda, M.; Aizenberg, J., Fabrication of Bioinspired Actuated Nanostructures with Arbitrary Geometry and Stiffness. Advanced Materials 2009, 21, 463-469. 26.Guo, L. J., Recent Progress in Nanoimprint Technology and Its Applications. Journal of Physics D: Applied Physics 2004, 37, R123. 27.Biswas, A.; Bayer, I. S.; Biris, A. S.; Wang, T.; Dervishi, E.; Faupel, F., Advances in Top-Down and Bottom-up Surface Nanofabrication: Techniques, Applications & Future Prospects. Advances in colloid and interface science 2012, 170, 2-27. 28.Jimenez-Cadena, G.; Comini, E.; Ferroni, M.; Vomiero, A.; Sberveglieri, G., Synthesis of Different ZnO Nanostructures by Modified PVD Process and Potential Use for Dye-Sensitized Solar Cells. Materials Chemistry and Physics 2010, 124, 694-698. 29.Obraztsov, A. N., Chemical Vapour Deposition: Making Graphene on a Large Scale. Nature nanotechnology 2009, 4, 212. 30.Dervishi, E.; Li, Z.; Watanabe, F.; Xu, Y.; Saini, V.; Biris, A. R.; Biris, A. S., Thermally Controlled Synthesis of Single-Wall Carbon Nanotubes with Selective Diameters. Journal of Materials Chemistry 2009, 19, 3004-3012. 31.Lu, Y.; Yin, Y.; Mayers, B. T.; Xia, Y., Modifying the Surface Properties of Superparamagnetic Iron Oxide Nanoparticles through a Sol-Gel Approach. Nano letters 2002, 2, 183-186. 32.Dislich, H.; Hinz, P., History and Principles of the Sol-Gel Process, and Some New Multicomponent Oxide Coatings. Journal of Non-Crystalline Solids 1982, 48, 11-16. 33.Kim, Y. H.; Heo, J. S.; Kim, T. H.; Park, S.; Yoon, M. H.; Kim, J.; Oh, M. S.; Yi, G. R.; Noh, Y. Y.; Park, S. K., Flexible Metal-Oxide Devices Made by Room-Temperature Photochemical Activation of Sol-Gel Films. Nature 2012, 489, 128. 34.Nuzzo, R. G.; Zegarski, B. R.; Dubois, L. H., Fundamental Studies of the Chemisorption of Organosulfur Compounds on Gold (111). Implications for Molecular Self-Assembly on Gold Surfaces. Journal of the American Chemical Society 1987, 109, 733-740. 35.Whitesides, G. M.; Mathias, J. P.; Seto, C. T., Molecular Self-Assembly and Nanochemistry: A Chemical Strategy for the Synthesis of Nanostructures. Science 1991, 254, 1312-1319. 36.Yu, Y. Y.; Chang, S. S.; Lee, C. L.; Wang, C. C., Gold Nanorods: Electrochemical Synthesis and Optical Properties. The Journal of Physical Chemistry B 1997, 101, 6661-6664. 37.Reetz, M. T.; Helbig, W., Size-Selective Synthesis of Nanostructured Transition Metal Clusters. Journal of the American Chemical Society 1994, 116, 7401-7402. 38.Caswell, K.; Bender, C. M.; Murphy, C. J., Seedless, Surfactantless Wet Chemical Synthesis of Silver Nanowires. Nano Letters 2003, 3, 667-669. 39.Zhang, H.; Lu, L.; Cao, Y.; Du, S.; Cheng, Z.; Zhang, S., Fabrication of Catalytically Active Au/Pt/Pd Trimetallic Nanoparticles by Rapid Injection of NaBH4. Materials Research Bulletin 2014, 49, 393-398. 40.Maillard, M.; Huang, P.; Brus, L., Silver Nanodisk Growth by Surface Plasmon Enhanced Photoreduction of Adsorbed [Ag+]. Nano Letters 2003, 3, 1611-1615. 41.Lee, B. H.; Hsu, M. S.; Hsu, Y. C.; Lo, C. W.; Huang, C. L., A Facile Method to Obtain Highly Stable Silver Nanoplate Colloids with Desired Surface Plasmon Resonance Wavelengths. The Journal of Physical Chemistry C 2010, 114, 6222-6227. 42.Jin, R.; Cao, Y.; Mirkin, C. A.; Kelly, K.; Schatz, G. C.; Zheng, J., Photoinduced Conversion of Silver Nanospheres to Nanoprisms. Science 2001, 294, 1901-1903. 43.Callegari, A.; Tonti, D.; Chergui, M., Photochemically Grown Silver Nanoparticles with Wavelength-Controlled Size and Shape. Nano Letters 2003, 3, 1565-1568. 44.Yang, L. C.; Lai, Y. S.; Tsai, C. M.; Kong, Y. T.; Lee, C. I.; Huang, C. L., One-Pot Synthesis of Monodispersed Silver Nanodecahedra with Optimal SERS Activities Using Seedless Photo-Assisted Citrate Reduction Method. The Journal of Physical Chemistry C 2012, 116, 24292-24300. 45.Skirtach, A. G.; Dejugnat, C.; Braun, D.; Susha, A. S.; Rogach, A. L.; Parak, W. J.; Möhwald, H.; Sukhorukov, G. B., The Role of Metal Nanoparticles in Remote Release of Encapsulated Materials. Nano letters 2005, 5, 1371-1377. 46.Kaneko, K.; Sun, H. B.; Duan, X. M.; Kawata, S., Two-Photon Photoreduction of Metallic Nanoparticle Gratings in a Polymer Matrix. Applied Physics Letters 2003, 83, 1426-1428. 47.Torigoe, K.; Esumi, K., Preparation of Colloidal Gold by Photoreduction of Tetracyanoaurate (1-)-Cationic Surfactant Complexes. Langmuir 1992, 8, 59-63. 48.Harada, M.; Saijo, K.; Sakamoto, N.; Einaga, H., Small-Angle X-Ray Scattering Study of Metal Nanoparticles Prepared by Photoreduction in Aqueous Solutions of Sodium Dodecyl Sulfate. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2009, 345, 41-50. 49.Harada, M.; Einaga, H., In Situ XAFS Studies of Au Particle Formation by Photoreduction in Polymer Solutions. Langmuir 2007, 23, 6536-6543. 50.Harada, M.; Saijo, K.; Sakamoto, N., Characterization of Metal Nanoparticles Prepared by Photoreduction in Aqueous Solutions of Various Surfactants Using UV-vis, EXAFS and SAXS. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2009, 349, 176-188. 51.Jia, H.; Zeng, J.; Song, W.; An, J.; Zhao, B., Preparation of Silver Nanoparticles by Photo-Reduction for Surface-Enhanced Raman Scattering. Thin Solid Films 2006, 496, 281-287. 52.Yan, C.; Xue, D., A Modified Electroless Deposition Route to Dendritic Cu Metal Nanostructures. Crystal Growth and Design 2008, 8, 1849-1854. 53.Brenner, A.; Riddell, G. E., Nickel Plating on Steel by Chemical Reduction. Journal of Research of the National Bureau of Standards 1946, 37, 31-34. 54.Shacham-Diamand, Y.; Osaka, T.; Okinaka, Y.; Sugiyama, A.; Dubin, V., 30years of Electroless Plating for Semiconductor and Polymer Micro-Systems. Microelectronic Engineering 2015, 132, 35-45. 55.王整憶. 無電極置換法製備金屬修飾鍺基材之紅外光表面增強訊號效果探討. 國立中興大學, 台中市, 2008. 56.Porter, L. A.; Choi, H. C.; Ribbe, A. E.; Buriak, J. M., Controlled Electroless Deposition of Noble Metal Nanoparticle Films on Germanium Surfaces. Nano letters 2002, 2, 1067-1071. 57.Brejna, P. R.; Griffiths, P. R.; Yang, J., Nanostructural Silver and Gold Substrates for Surface-Enhanced Raman Spectroscopy Measurements Prepared by Galvanic Displacement on Germanium Disks. Applied spectroscopy 2009, 63, 396-400. 58.Lee, K. Y.; Han, S. W.; Choi, H. C., Organic-Free Au-Pd Alloys on Germanium Substrate Via Spontaneous Galvanic Displacement Reaction. Bulletin of the Korean Chemical Society 2009, 30, 3113-3116. 59.Zuo, C.; Jagodzinski, P. W., Surface-Enhanced Raman Scattering of Pyridine Using Different Metals: Differences and Explanation Based on the Selective Formation of Α-Pyridyl on Metal Surfaces. The Journal of Physical Chemistry B 2005, 109, 1788-1793. 60.Gutés, A.; Carraro, C.; Maboudian, R., Silver Dendrites from Galvanic Displacement on Commercial Aluminum Foil as an Effective SERS Substrate. Journal of the American Chemical Society 2010, 132, 1476-1477. 61.Gutés, A.; Maboudian, R.; Carraro, C., Gold-Coated Silver Dendrites as SERS Substrates with an Improved Lifetime. Langmuir 2012, 28, 17846-17850. 62.Bao, W. J.; Li, J.; Li, J.; Zhang, Q. W.; Liu, Y.; Shi, C. F.; Xia, X. H., Au/ZnSe-Based Surface Enhanced Infrared Absorption Spectroscopy as a Universal Platform for Bioanalysis. Analytical chemistry 2018, 90, 3842-3848. 63.Betz, J. F.; Cheng, Y.; Rubloff, G. W., Direct SERS Detection of Contaminants in a Complex Mixture: Rapid, Single Step Screening for Melamine in Liquid Infant Formula. Analyst 2012, 137, 826-828. 64.Stroyuk, A.; Raevskaya, A.; Korzhak, A.; Kuchmii, S., Zinc Sulfide Nanoparticles: Spectral Properties and Photocatalytic Activity in Metals Reduction Reactions. Journal of nanoparticle research 2007, 9, 1027-1039. 65.Feng, B.; Cao, J.; Yang, J.; Yang, S.; Han, D., Characterization and Photocatalytic Activity of ZnSe Nanoparticles Synthesized by a Facile Solvothermal Method, and the Effects of Different Solvents on These Properties. Materials Research Bulletin 2014, 60, 794-801. 66.Kanemoto, M.; Shiragami, T.; Pac, C.; Yanagida, S., Semiconductor Photocatalysis. 13. Effective Photoreduction of Carbon Dioxide Catalyzed by Zinc Sulfide Quantum Crystallites with Low Density of Surface Defects. The Journal of Physical Chemistry 1992, 96, 3521-3526. 67.Yadav, K.; Jaggi, N., Effect of Ag Doping on Structural and Optical Properties of ZnSe Nanophosphors. Materials Science in Semiconductor Processing 2015, 30, 376-380. 68.Skoog, D. A.; West, D. M.; Holler, F. J.; Crouch, S., Fundamentals of Analytical Chemistry; Nelson Education, 2013. 69.Lee, H. M.; Kim, M. S.; Kim, K., Surface-Enhanced Raman Scattering of Ortho-and Para-Mercaptophenols in Silver Sol. Vibrational spectroscopy 1994, 6, 205-214. 70.Nikoobakht, B.; El-Sayed, M. A., Preparation and Growth Mechanism of Gold Nanorods (NRs) Using Seed-Mediated Growth Method. Chemistry of Materials 2003, 15, 1957-1962. 71.Du, L.; Kong, F.; Chen, G.; Du, C.; Gao, Y.; Yin, G., A Review of Applications of Poly(Diallyldimethyl Ammonium Chloride) in Polymer Membrane Fuel Cells: From Nanoparticles to Support Materials. Chinese Journal of Catalysis 2016, 37, 1025-1036. 72.Shang, Y.; Min, C.; Hu, J.; Wang, T.; Liu, H.; Hu, Y., Synthesis of Gold Nanoparticles by Reduction of HAuCl4 under UV Irradiation. Solid State Sciences 2013, 15, 17-23. 73.Dozol, H. l. n.; Mériguet, G.; Ancian, B.; Cabuil, V. R.; Xu, H.; Wang, D.; Abou-Hassan, A., On the Synthesis of Au Nanoparticles Using EDTA as a Reducing Agent. The Journal of Physical Chemistry C 2013, 117, 20958-20966. 74.Wang, D.; Liu, Y.; Zhou, X.; Sun, J.; You, T., EDTA-Controlled One-Pot Preparation of Novel Shaped Gold Microcrystals and Their Application in Surface-Enhanced Raman Scattering. Chemistry letters 2007, 36, 924-925. 75.Jang, Y.; Lee, N.; Kim, J. H.; Park, Y. I.; Piao, Y., Shape-Controlled Synthesis of Au Nanostructures Using EDTA Tetrasodium Salt and Their Photothermal Therapy Applications. Nanomaterials 2018, 8, 252. 76.Du Toit, H.; Macdonald, T.; Huang, H.; Parkin, I.; Gavriilidis, A., Continuous Flow Synthesis of Citrate Capped Gold Nanoparticles Using UV Induced Nucleation. RSC Advances 2017, 7, 9632-9638. 77.Kan, C.; Cai, W.; Li, C.; Zhang, L., Optical Studies of Polyvinylpyrrolidone Reduction Effect on Free and Complex Metal Ions. Journal of Materials Research 2005, 20, 320-324. 78.Yuan, L.; He, Y., Effect of Surface Charge of PDDA-Protected Gold Nanoparticles on the Specificity and Efficiency of DNA Polymerase Chain Reaction. Analyst 2013, 138, 539-545. 79.Shah, E.; Upadhyay, P.; Singh, M.; Mansuri, M. S.; Begum, R.; Sheth, N.; Soni, H. P., EDTA Capped Iron Oxide Nanoparticles Magnetic Micelles: Drug Delivery Vehicle for Treatment of Chronic Myeloid Leukemia and T1-T2 Dual Contrast Agent for Magnetic Resonance Imaging. New Journal of Chemistry 2016, 40, 9507-9519. 80.Petean, I.; Tomoaia, G.; Horovitz, O.; Mocanu, A.; Tomoaia-Cotisel, M., Cysteine Mediated Assembly of Gold Nanoparticles. Journal of Optoelectronics and Advanced Materials 2008, 10, 2289-2292. 81.Behera, M.; Ram, S., Inquiring the Mechanism of Formation, Encapsulation, and Stabilization of Gold Nanoparticles by Poly(Vinyl Pyrrolidone) Molecules in 1-Butanol. Applied Nanoscience 2014, 4, 247-254. 82.Chen, H.; Dong, S., A Method to Construct Polyelectrolyte Multilayers Film Containing Gold Nanoparticles. Talanta 2007, 71, 1752-1756. 83.古涵如. 光還原輔助法製備金屬奈米粒修飾硒化鋅晶體在紅外光表面訊號增強光譜法之應用效果探討. 國立中興大學, 台中市, 2014. 84.賴建智. 無電極置換法製備金屬在ZnSe基材對紅外光表面增強訊號之效果探討. 國立中興大學, 台中市, 2007.
|