跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.11) 您好!臺灣時間:2025/09/23 22:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:莊雅婷
研究生(外文):Ya-Ting Chuang
論文名稱:光化學輔助法修飾金奈米粒於硫化鋅及硒化鋅晶體上做為表面增強拉曼散射法測量基板的效果探討
論文名稱(外文):Photochemical Assisted Method in Decoration of Au Nanoparticles on ZnS and ZnSe Crystal for Surface-enhanced Raman Scattering Measurement
指導教授:楊吉斯
口試委員:蕭明文黃景帆
口試日期:2018-07-23
學位類別:碩士
校院名稱:國立中興大學
系所名稱:化學系所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:136
中文關鍵詞:無電極置換法表面增強拉曼散射金奈米粒子
外文關鍵詞:SERSElectroless depositionZnSeZnS
相關次數:
  • 被引用被引用:0
  • 點閱點閱:111
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
由於表面增強拉曼散射效應能夠大幅提升分析化學物質的靈敏度,因此本研究利用無電極置換法及用具有特殊光化學性質之半導體ZnS及ZnSe晶體為基材,以簡單操作及設備製作具有表面增強拉曼散射活性的基板。此方法是利用基材本身與溶液中金屬離子的氧化還原電位差,使金屬奈米粒子自發性的生成於基材表面,並配合適當之熱、光輔助法及添加劑作用,還原金離子修飾於晶體上。為了探討不同反應條件對生成的金屬材料影響,以pHydroxythiophenol (pHTP)為指標分子,藉由拉曼訊號及對應之SEM影像,了解製備出的金奈米基材的形態與性質對拉曼訊號增強效果的影響,再進一步開發出增強基板。
從實驗結果得知,以熱輔助法可製備金奈米粒子於ZnS及ZnSe晶體上,並分別添加1 mM及 3 mM PVP控制粒子型態即可獲得典型的SERS光譜,使訊號強度最佳至4076(±340) counts及50022(±2756) counts;然而使用光輔助法所獲得的粒子,經EDS元素分析後得知其生成AuxSy及AuxSey複合物於粒子表面,即使利用添加劑控制型態,仍有機會影響到訊號增強的表現,以目前實驗結果當添加3 mM EDTA於ZnS光輔助反應中,最佳訊號強度為1027(±236),使用PVP於ZnSe光化學輔助反應中,最佳訊號強度為11287(±796) counts,但經過pHTP吸附或是水煮等方法,有效去除部分的複合物,因此訊號表現也與粒子的粒性、型態等性質有關,可對照SEM影像了解其相關性。
另外,對照第三及第四章實驗結果,使用PVP及EDTA於溶液中,經熱輔助及光化學輔助法生成之粒子型態及訊號趨勢可以得知,使用不同晶體及置備方法,可生成出不同形態之金奈米粒子,進而影響基材對於指標分子訊號增強的效果,因此需挑選適當實驗條件製作出良好的SERS活性基材。
最後,兩者晶體以最佳條件下製備SERS基材的增強因子分別為,添加1 mM PVP於ZnS熱輔助法並反應30分鐘之EF值為4.6(±0.5)×106;而添加3 mM PVP於ZnSe熱輔助法並反應42分鐘之EF值為4.6(±0.8)×107。
Surface-enhanced Raman scattering (SERS) is a powerful means for chemical analysis. This SERS effect can be observed when target molecules adsorbed or nearby metal nanoparitcles with a proper size and shape. To prepare active substrates for SERS measurements, ZnS and ZnSe crystals were selected as solid support in this work as they are commonly used optical windows, which exhibit photocatalytic ability with unique chemical properties. Methods based on electroless displacement and the assistance of photoreduction were developed to decorate SERS active gold nanoparticles (AuNPs) on the selected ZnS and ZnSe crystals. Several parameters, such as the concentration of reaction solution, the temperature of reaction, photo irradiation time, and the additive, were examined their contributions to the production of suitable AuNPs for SERS measurements. pHydroxythiophenol (pHTP) was used to probe the SERS performances for the prepared SERS substrates. After correlation of the observed Raman signals, the morphology of produced AuNPs by SEM with reaction parameters, mechanisms in production of AuNPs on ZnS and ZnSe were found significantly different. For produced AuNPs on ZnS crystal, AuxSy particles were formed rather than AuNPs, which degraded their SERS performances. On the other hand, when ZnSe crystals were used, Se atoms in the ZnSe crystals are capable to reduce the gold ions through formation of higher oxidation state of Se and hence, AuxSe particles formed on the surface of ZnSe is limited. On the other hand, SERS substrates based on ZnSe showed much better performances than that of ZnS. By tuning the reaction conditions, SERS substrates based on ZnS and ZnSe could be successfully prepared. Based on the optimized condition in preparation of SERS substrates, SERS intensity of pHTP on ZnS substrate was found an order weaker than that of ZnSe. In conclusion, a new method to prepare AuNPs on ZnS and ZnSe was successfully developed in this work and both the mechanism in formation and the impact of each parameter to the formation of AuNPs were well explored.
摘要 i
Abstract ii
總目錄 iii
圖目錄 vi
表目錄 xvi
第一章 序論 1
1-1 前言 1
1-2 表面增強拉曼效應的應用 2
1-3 表面增強拉曼散射之金屬奈米粒子由上而下法製作 3
1-4表面增強拉曼散射之金屬奈米粒子由下而上法製作 3
1-4-1 蒸鍍法(Deposition): 3
1-4-2 溶膠-凝膠法(Sol-Gel): 3
1-4-3 分子自組裝(Molecular self-assembly): 4
1-4-4電化學方法(Electrochemistry): 4
1-4-5 化學還原法: 4
1-4-6 無電極置換法(Electroless deposition): 5
1-5 研究動機 6
第二章 實驗部分 9
2-1 光學儀器與設備 9
2-3 藥品配製 11
2-4 金奈米粒子之製備方法 12
2-4-1 晶體拋光清洗: 12
2-4-2 無電極置換法: 12
2-4-3 光還原輔助法製備法: 12
2-5 UV光照系統設置與規格: 13
2-6 拉曼光譜測量與設定: 13
2-7 紫外-可見光光譜測量與設定: 13
第三章 光熱輔助法在ZnS晶體表面修飾金奈米材料的效果探討 16
3-1 前言 16
3-2 指標分子基礎探討 16
3-3 熱輔助法對製備金奈米基材之效果探討 19
3-3-1 開放性容器 19
3-3-2 密閉容器 23
3-4添加劑於熱輔助法對金奈米基材之效果探討 31
3-4-1添加劑種類於熱輔助法對金奈米基材之效果 33
3-4-2 PVP濃度於熱輔助法對金奈米基材之效果 39
3-4-3 EDTA濃度於熱輔助法對金奈米基材之效果 43
3-4-4 添加劑於熱輔助法對金奈米粒子生成於ZnS基材之元素組成探討 43
3-5 光化學輔助法與金溶液濃度對金奈米粒基材之探討 46
3-6 添加劑於光化學輔助法對金奈米基材之效果探討 52
3-6-1 添加劑種類於光化學輔助法對金奈米基材之效果 52
3-6-2 EDTA濃度於光化學輔助法對金奈米基材之效果探討 58
3-6-3 PVP濃度於光化學輔助法對金奈米基材之效果 64
3-6-4 添加劑於光輔助法對金奈米粒子生成於ZnS基材之元素組成探討 67
3-7 於ZnS表面製備金奈米粒子SERS基材的訊號增益倍率 72
3-8 結論 74
第四章 光熱輔助法在ZnSe晶體表面修飾金奈米材料的效果探討 75
4-1 前言 75
4-2 指標分子基礎探討 75
4-3 熱輔助法對製備金奈米基材之效果探討 77
4-3-1 開放容器 77
4-3-2 密閉容器 80
4-4添加劑於熱輔助法對金奈米基材之效果探討 86
4-4-1添加劑種類於熱輔助法對金奈米基材之效果 86
4-4-2 PVP濃度於熱輔助法對金奈米基材之效果 91
4-4-3 EDTA濃度於熱輔助法對金奈米基材之效果 94
4-4-4 添加劑於熱輔助法對金奈米粒子生成於ZnSe基材之元素組成探討 94
4-5 光化學輔助法與金溶液濃度對金奈米粒基材之探討 97
4-6 添加劑對於光化學輔助法對金奈米基材之效果探討 103
4-6-1 添加劑種類於光化學輔助法對金奈米基材之效果 104
4-6-2 PVP濃度於光化學輔助法對金奈米基材之效果探討 110
4-6-3 EDTA濃度於光化學輔助法對金奈米基材之效果探討 117
4-6-4 添加劑於光輔助法對金奈米粒子生成於ZnSe基材之元素組成探討 122
4-7於ZnSe表面製備金奈米SERS基材的訊號增益倍率 126
4-8 結論 128
第五章 總結 129
參考文獻 130
1. Raman, C. V., A New Radiation. 1928.
2.Fleischmann, M.; Hendra, P. J.; McQuillan, A. J., Raman Spectra of Pyridine Adsorbed at a Silver Electrode. Chemical Physics Letters 1974, 26, 163-166.
3.Jeanmaire, D. L.; Van Duyne, R. P., Surface Raman Spectroelectrochemistry: Part I. Heterocyclic, Aromatic, and Aliphatic Amines Adsorbed on the Anodized Silver Electrode. Journal of electroanalytical chemistry and interfacial electrochemistry 1977, 84, 1-20.
4.Albrecht, M. G.; Creighton, J. A., Anomalously Intense Raman Spectra of Pyridine at a Silver Electrode. Journal of the american chemical society 1977, 99, 5215-5217.
5.Moskovits, M., Surface-Enhanced Spectroscopy. Reviews of modern physics 1985, 57, 783.
6.Arenas, J. F.; López Tocón, I.; Otero, J. C.; Marcos, J. I., Charge Transfer Processes in Surface-Enhanced Raman Scattering. Franck-Condon Active Vibrations of Pyridine. The Journal of Physical Chemistry 1996, 100, 9254-9261.
7.Kneipp, K.; Kneipp, H.; Itzkan, I.; Dasari, R. R.; Feld, M. S., Ultrasensitive Chemical Analysis by Raman Spectroscopy. Chemical reviews 1999, 99, 2957-2976.
8.Puppels, G.; De Mul, F.; Otto, C.; Greve, J.; Robert-Nicoud, M.; Arndt-Jovin, D.; Jovin, T., Studying Single Living Cells and Chromosomes by Confocal Raman Microspectroscopy. Nature 1990, 347, 301.
9.Tian, Z., Surface‐Enhanced Raman Spectroscopy: Advancements and Applications. Journal of Raman Spectroscopy 2005, 36, 466-470.
10.Eustis, S.; El-Sayed, M. A., Why Gold Nanoparticles Are More Precious Than Pretty Gold: Noble Metal Surface Plasmon Resonance and Its Enhancement of the Radiative and Nonradiative Properties of Nanocrystals of Different Shapes. Chemical society reviews 2006, 35, 209-217.
11.Le Ru, E.; Blackie, E.; Meyer, M.; Etchegoin, P. G., Surface Enhanced Raman Scattering Enhancement Factors: A Comprehensive Study. The Journal of Physical Chemistry C 2007, 111, 13794-13803.
12.Schlücker, S., Surface‐Enhanced Raman Spectroscopy: Concepts and Chemical Applications. Angewandte Chemie International Edition 2014, 53, 4756-4795.
13.Wang, Z.; Zong, S.; Wu, L.; Zhu, D.; Cui, Y., SERS-Activated Platforms for Immunoassay: Probes, Encoding Methods, and Applications. Chemical reviews 2017, 117, 7910-7963.
14.Sheng, R.; Ni, F.; Cotton, T. M., Determination of Purine Bases by Reversed-Phase High-Performance Liquid Chromatography Using Real-Time Surface-Enhanced Raman Spectroscopy. Analytical chemistry 1991, 63, 437-442.
15.Grubisha, D. S.; Lipert, R. J.; Park, H. Y.; Driskell, J.; Porter, M. D., Femtomolar Detection of Prostate-Specific Antigen: An Immunoassay Based on Surface-Enhanced Raman Scattering and Immunogold Labels. Analytical chemistry 2003, 75, 5936-5943.
16.Kneipp, K.; Kneipp, H.; Kartha, V. B.; Manoharan, R.; Deinum, G.; Itzkan, I.; Dasari, R. R.; Feld, M. S., Detection and Identification of a Single DNA Base Molecule Using Surface-Enhanced Raman Scattering (SERS). Physical Review E 1998, 57, R6281.
17.Mohs, A. M.; Mancini, M. C.; Singhal, S.; Provenzale, J. M.; Leyland-Jones, B.; Wang, M. D.; Nie, S., Hand-Held Spectroscopic Device for in Vivo and Intraoperative Tumor Detection: Contrast Enhancement, Detection Sensitivity, and Tissue Penetration. Analytical chemistry 2010, 82, 9058-9065.
18.Han, Z.; Liu, H.; Meng, J.; Yang, L.; Liu, J.; Liu, J., Portable Kit for Identification and Detection of Drugs in Human Urine Using Surface-Enhanced Raman Spectroscopy. Analytical chemistry 2015, 87, 9500-9506.
19.Qian, X.; Li, J.; Nie, S., Stimuli-Responsive Sers Nanoparticles: Conformational Control of Plasmonic Coupling and Surface Raman Enhancement. Journal of the American Chemical Society 2009, 131, 7540-7541.
20.Wang, P.; Wu, L.; Lu, Z.; Li, Q.; Yin, W.; Ding, F.; Han, H., Gecko-Inspired Nanotentacle Surface-Enhanced Raman Spectroscopy Substrate for Sampling and Reliable Detection of Pesticide Residues in Fruits and Vegetables. Analytical chemistry 2017, 89, 2424-2431.
21.Chen, J.; Huang, Y.; Kannan, P.; Zhang, L.; Lin, Z.; Zhang, J.; Chen, T.; Guo, L., Flexible and Adhesive Surface Enhance Raman Scattering Active Tape for Rapid Detection of Pesticide Residues in Fruits and Vegetables. Analytical chemistry 2016, 88, 2149-2155.
22.Betz, J. F.; Wei, W. Y.; Cheng, Y.; White, I. M.; Rubloff, G. W., Simple SERS Substrates: Powerful, Portable, and Full of Potential. Physical Chemistry Chemical Physics 2014, 16, 2224-2239.
23.Gates, B. D.; Xu, Q.; Stewart, M.; Ryan, D.; Willson, C. G.; Whitesides, G. M., New Approaches to Nanofabrication: Molding, Printing, and Other Techniques. Chemical reviews 2005, 105, 1171-1196.
24.Li, S.; Peyrade, D.; Natali, M.; Lebib, A.; Chen, Y.; Ebels, U.; Buda, L.; Ounadjela, K., Flux Closure Structures in Cobalt Rings. Physical Review Letters 2001, 86, 1102.
25.Pokroy, B.; Epstein, A. K.; Persson-Gulda, M.; Aizenberg, J., Fabrication of Bioinspired Actuated Nanostructures with Arbitrary Geometry and Stiffness. Advanced Materials 2009, 21, 463-469.
26.Guo, L. J., Recent Progress in Nanoimprint Technology and Its Applications. Journal of Physics D: Applied Physics 2004, 37, R123.
27.Biswas, A.; Bayer, I. S.; Biris, A. S.; Wang, T.; Dervishi, E.; Faupel, F., Advances in Top-Down and Bottom-up Surface Nanofabrication: Techniques, Applications & Future Prospects. Advances in colloid and interface science 2012, 170, 2-27.
28.Jimenez-Cadena, G.; Comini, E.; Ferroni, M.; Vomiero, A.; Sberveglieri, G., Synthesis of Different ZnO Nanostructures by Modified PVD Process and Potential Use for Dye-Sensitized Solar Cells. Materials Chemistry and Physics 2010, 124, 694-698.
29.Obraztsov, A. N., Chemical Vapour Deposition: Making Graphene on a Large Scale. Nature nanotechnology 2009, 4, 212.
30.Dervishi, E.; Li, Z.; Watanabe, F.; Xu, Y.; Saini, V.; Biris, A. R.; Biris, A. S., Thermally Controlled Synthesis of Single-Wall Carbon Nanotubes with Selective Diameters. Journal of Materials Chemistry 2009, 19, 3004-3012.
31.Lu, Y.; Yin, Y.; Mayers, B. T.; Xia, Y., Modifying the Surface Properties of Superparamagnetic Iron Oxide Nanoparticles through a Sol-Gel Approach. Nano letters 2002, 2, 183-186.
32.Dislich, H.; Hinz, P., History and Principles of the Sol-Gel Process, and Some New Multicomponent Oxide Coatings. Journal of Non-Crystalline Solids 1982, 48, 11-16.
33.Kim, Y. H.; Heo, J. S.; Kim, T. H.; Park, S.; Yoon, M. H.; Kim, J.; Oh, M. S.; Yi, G. R.; Noh, Y. Y.; Park, S. K., Flexible Metal-Oxide Devices Made by Room-Temperature Photochemical Activation of Sol-Gel Films. Nature 2012, 489, 128.
34.Nuzzo, R. G.; Zegarski, B. R.; Dubois, L. H., Fundamental Studies of the Chemisorption of Organosulfur Compounds on Gold (111). Implications for Molecular Self-Assembly on Gold Surfaces. Journal of the American Chemical Society 1987, 109, 733-740.
35.Whitesides, G. M.; Mathias, J. P.; Seto, C. T., Molecular Self-Assembly and Nanochemistry: A Chemical Strategy for the Synthesis of Nanostructures. Science 1991, 254, 1312-1319.
36.Yu, Y. Y.; Chang, S. S.; Lee, C. L.; Wang, C. C., Gold Nanorods: Electrochemical Synthesis and Optical Properties. The Journal of Physical Chemistry B 1997, 101, 6661-6664.
37.Reetz, M. T.; Helbig, W., Size-Selective Synthesis of Nanostructured Transition Metal Clusters. Journal of the American Chemical Society 1994, 116, 7401-7402.
38.Caswell, K.; Bender, C. M.; Murphy, C. J., Seedless, Surfactantless Wet Chemical Synthesis of Silver Nanowires. Nano Letters 2003, 3, 667-669.
39.Zhang, H.; Lu, L.; Cao, Y.; Du, S.; Cheng, Z.; Zhang, S., Fabrication of Catalytically Active Au/Pt/Pd Trimetallic Nanoparticles by Rapid Injection of NaBH4. Materials Research Bulletin 2014, 49, 393-398.
40.Maillard, M.; Huang, P.; Brus, L., Silver Nanodisk Growth by Surface Plasmon Enhanced Photoreduction of Adsorbed [Ag+]. Nano Letters 2003, 3, 1611-1615.
41.Lee, B. H.; Hsu, M. S.; Hsu, Y. C.; Lo, C. W.; Huang, C. L., A Facile Method to Obtain Highly Stable Silver Nanoplate Colloids with Desired Surface Plasmon Resonance Wavelengths. The Journal of Physical Chemistry C 2010, 114, 6222-6227.
42.Jin, R.; Cao, Y.; Mirkin, C. A.; Kelly, K.; Schatz, G. C.; Zheng, J., Photoinduced Conversion of Silver Nanospheres to Nanoprisms. Science 2001, 294, 1901-1903.
43.Callegari, A.; Tonti, D.; Chergui, M., Photochemically Grown Silver Nanoparticles with Wavelength-Controlled Size and Shape. Nano Letters 2003, 3, 1565-1568.
44.Yang, L. C.; Lai, Y. S.; Tsai, C. M.; Kong, Y. T.; Lee, C. I.; Huang, C. L., One-Pot Synthesis of Monodispersed Silver Nanodecahedra with Optimal SERS Activities Using Seedless Photo-Assisted Citrate Reduction Method. The Journal of Physical Chemistry C 2012, 116, 24292-24300.
45.Skirtach, A. G.; Dejugnat, C.; Braun, D.; Susha, A. S.; Rogach, A. L.; Parak, W. J.; Möhwald, H.; Sukhorukov, G. B., The Role of Metal Nanoparticles in Remote Release of Encapsulated Materials. Nano letters 2005, 5, 1371-1377.
46.Kaneko, K.; Sun, H. B.; Duan, X. M.; Kawata, S., Two-Photon Photoreduction of Metallic Nanoparticle Gratings in a Polymer Matrix. Applied Physics Letters 2003, 83, 1426-1428.
47.Torigoe, K.; Esumi, K., Preparation of Colloidal Gold by Photoreduction of Tetracyanoaurate (1-)-Cationic Surfactant Complexes. Langmuir 1992, 8, 59-63.
48.Harada, M.; Saijo, K.; Sakamoto, N.; Einaga, H., Small-Angle X-Ray Scattering Study of Metal Nanoparticles Prepared by Photoreduction in Aqueous Solutions of Sodium Dodecyl Sulfate. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2009, 345, 41-50.
49.Harada, M.; Einaga, H., In Situ XAFS Studies of Au Particle Formation by Photoreduction in Polymer Solutions. Langmuir 2007, 23, 6536-6543.
50.Harada, M.; Saijo, K.; Sakamoto, N., Characterization of Metal Nanoparticles Prepared by Photoreduction in Aqueous Solutions of Various Surfactants Using UV-vis, EXAFS and SAXS. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2009, 349, 176-188.
51.Jia, H.; Zeng, J.; Song, W.; An, J.; Zhao, B., Preparation of Silver Nanoparticles by Photo-Reduction for Surface-Enhanced Raman Scattering. Thin Solid Films 2006, 496, 281-287.
52.Yan, C.; Xue, D., A Modified Electroless Deposition Route to Dendritic Cu Metal Nanostructures. Crystal Growth and Design 2008, 8, 1849-1854.
53.Brenner, A.; Riddell, G. E., Nickel Plating on Steel by Chemical Reduction. Journal of Research of the National Bureau of Standards 1946, 37, 31-34.
54.Shacham-Diamand, Y.; Osaka, T.; Okinaka, Y.; Sugiyama, A.; Dubin, V., 30years of Electroless Plating for Semiconductor and Polymer Micro-Systems. Microelectronic Engineering 2015, 132, 35-45.
55.王整憶. 無電極置換法製備金屬修飾鍺基材之紅外光表面增強訊號效果探討. 國立中興大學, 台中市, 2008.
56.Porter, L. A.; Choi, H. C.; Ribbe, A. E.; Buriak, J. M., Controlled Electroless Deposition of Noble Metal Nanoparticle Films on Germanium Surfaces. Nano letters 2002, 2, 1067-1071.
57.Brejna, P. R.; Griffiths, P. R.; Yang, J., Nanostructural Silver and Gold Substrates for Surface-Enhanced Raman Spectroscopy Measurements Prepared by Galvanic Displacement on Germanium Disks. Applied spectroscopy 2009, 63, 396-400.
58.Lee, K. Y.; Han, S. W.; Choi, H. C., Organic-Free Au-Pd Alloys on Germanium Substrate Via Spontaneous Galvanic Displacement Reaction. Bulletin of the Korean Chemical Society 2009, 30, 3113-3116.
59.Zuo, C.; Jagodzinski, P. W., Surface-Enhanced Raman Scattering of Pyridine Using Different Metals: Differences and Explanation Based on the Selective Formation of Α-Pyridyl on Metal Surfaces. The Journal of Physical Chemistry B 2005, 109, 1788-1793.
60.Gutés, A.; Carraro, C.; Maboudian, R., Silver Dendrites from Galvanic Displacement on Commercial Aluminum Foil as an Effective SERS Substrate. Journal of the American Chemical Society 2010, 132, 1476-1477.
61.Gutés, A.; Maboudian, R.; Carraro, C., Gold-Coated Silver Dendrites as SERS Substrates with an Improved Lifetime. Langmuir 2012, 28, 17846-17850.
62.Bao, W. J.; Li, J.; Li, J.; Zhang, Q. W.; Liu, Y.; Shi, C. F.; Xia, X. H., Au/ZnSe-Based Surface Enhanced Infrared Absorption Spectroscopy as a Universal Platform for Bioanalysis. Analytical chemistry 2018, 90, 3842-3848.
63.Betz, J. F.; Cheng, Y.; Rubloff, G. W., Direct SERS Detection of Contaminants in a Complex Mixture: Rapid, Single Step Screening for Melamine in Liquid Infant Formula. Analyst 2012, 137, 826-828.
64.Stroyuk, A.; Raevskaya, A.; Korzhak, A.; Kuchmii, S., Zinc Sulfide Nanoparticles: Spectral Properties and Photocatalytic Activity in Metals Reduction Reactions. Journal of nanoparticle research 2007, 9, 1027-1039.
65.Feng, B.; Cao, J.; Yang, J.; Yang, S.; Han, D., Characterization and Photocatalytic Activity of ZnSe Nanoparticles Synthesized by a Facile Solvothermal Method, and the Effects of Different Solvents on These Properties. Materials Research Bulletin 2014, 60, 794-801.
66.Kanemoto, M.; Shiragami, T.; Pac, C.; Yanagida, S., Semiconductor Photocatalysis. 13. Effective Photoreduction of Carbon Dioxide Catalyzed by Zinc Sulfide Quantum Crystallites with Low Density of Surface Defects. The Journal of Physical Chemistry 1992, 96, 3521-3526.
67.Yadav, K.; Jaggi, N., Effect of Ag Doping on Structural and Optical Properties of ZnSe Nanophosphors. Materials Science in Semiconductor Processing 2015, 30, 376-380.
68.Skoog, D. A.; West, D. M.; Holler, F. J.; Crouch, S., Fundamentals of Analytical Chemistry; Nelson Education, 2013.
69.Lee, H. M.; Kim, M. S.; Kim, K., Surface-Enhanced Raman Scattering of Ortho-and Para-Mercaptophenols in Silver Sol. Vibrational spectroscopy 1994, 6, 205-214.
70.Nikoobakht, B.; El-Sayed, M. A., Preparation and Growth Mechanism of Gold Nanorods (NRs) Using Seed-Mediated Growth Method. Chemistry of Materials 2003, 15, 1957-1962.
71.Du, L.; Kong, F.; Chen, G.; Du, C.; Gao, Y.; Yin, G., A Review of Applications of Poly(Diallyldimethyl Ammonium Chloride) in Polymer Membrane Fuel Cells: From Nanoparticles to Support Materials. Chinese Journal of Catalysis 2016, 37, 1025-1036.
72.Shang, Y.; Min, C.; Hu, J.; Wang, T.; Liu, H.; Hu, Y., Synthesis of Gold Nanoparticles by Reduction of HAuCl4 under UV Irradiation. Solid State Sciences 2013, 15, 17-23.
73.Dozol, H. l. n.; Mériguet, G.; Ancian, B.; Cabuil, V. R.; Xu, H.; Wang, D.; Abou-Hassan, A., On the Synthesis of Au Nanoparticles Using EDTA as a Reducing Agent. The Journal of Physical Chemistry C 2013, 117, 20958-20966.
74.Wang, D.; Liu, Y.; Zhou, X.; Sun, J.; You, T., EDTA-Controlled One-Pot Preparation of Novel Shaped Gold Microcrystals and Their Application in Surface-Enhanced Raman Scattering. Chemistry letters 2007, 36, 924-925.
75.Jang, Y.; Lee, N.; Kim, J. H.; Park, Y. I.; Piao, Y., Shape-Controlled Synthesis of Au Nanostructures Using EDTA Tetrasodium Salt and Their Photothermal Therapy Applications. Nanomaterials 2018, 8, 252.
76.Du Toit, H.; Macdonald, T.; Huang, H.; Parkin, I.; Gavriilidis, A., Continuous Flow Synthesis of Citrate Capped Gold Nanoparticles Using UV Induced Nucleation. RSC Advances 2017, 7, 9632-9638.
77.Kan, C.; Cai, W.; Li, C.; Zhang, L., Optical Studies of Polyvinylpyrrolidone Reduction Effect on Free and Complex Metal Ions. Journal of Materials Research 2005, 20, 320-324.
78.Yuan, L.; He, Y., Effect of Surface Charge of PDDA-Protected Gold Nanoparticles on the Specificity and Efficiency of DNA Polymerase Chain Reaction. Analyst 2013, 138, 539-545.
79.Shah, E.; Upadhyay, P.; Singh, M.; Mansuri, M. S.; Begum, R.; Sheth, N.; Soni, H. P., EDTA Capped Iron Oxide Nanoparticles Magnetic Micelles: Drug Delivery Vehicle for Treatment of Chronic Myeloid Leukemia and T1-T2 Dual Contrast Agent for Magnetic Resonance Imaging. New Journal of Chemistry 2016, 40, 9507-9519.
80.Petean, I.; Tomoaia, G.; Horovitz, O.; Mocanu, A.; Tomoaia-Cotisel, M., Cysteine Mediated Assembly of Gold Nanoparticles. Journal of Optoelectronics and Advanced Materials 2008, 10, 2289-2292.
81.Behera, M.; Ram, S., Inquiring the Mechanism of Formation, Encapsulation, and Stabilization of Gold Nanoparticles by Poly(Vinyl Pyrrolidone) Molecules in 1-Butanol. Applied Nanoscience 2014, 4, 247-254.
82.Chen, H.; Dong, S., A Method to Construct Polyelectrolyte Multilayers Film Containing Gold Nanoparticles. Talanta 2007, 71, 1752-1756.
83.古涵如. 光還原輔助法製備金屬奈米粒修飾硒化鋅晶體在紅外光表面訊號增強光譜法之應用效果探討. 國立中興大學, 台中市, 2014.
84.賴建智. 無電極置換法製備金屬在ZnSe基材對紅外光表面增強訊號之效果探討. 國立中興大學, 台中市, 2007.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. 利用硫醇化合物探討表面增益拉曼散射效應
2. 三維式聚碳酸酯奈米纖維之製備與其在表面增強拉曼散射測量之應用
3. 新穎含雙胺基雙苯並三唑苯酚氧配位基的雙金屬鎳與鈷錯合物之合成、結構以及應用於二氧化碳/環氧化物共聚合反應之催化研究
4. 穩定同位素標定技術結合液相層析串聯質譜術應用於鑑定蛋白質泛素化
5. QuEChERS萃取技術結合液相層析串聯質譜術於蔬果中農藥殘留之分析
6. 結合QuPPe萃取與液相層析串聯質譜術於麵粉中添加劑及其降解物檢測之研究
7. 新穎含雙亞胺基雙苯並三唑苯酚氧配位基修飾的雙核鎳錯合物之合成、結構鑑定與催化研究:共配位基對二氧化碳/環氧化物共聚合反應催化效率之探討
8. 染料敏化太陽能電池之鋅紫質合成與特性及電阻型記憶元件
9. 希夫鹼鎳錯合物的合成、結構鑑定及其在二氧化碳與環氧化物共聚合反應之催化研究
10. 製備Pt3Ni(白金皮層)薄層修飾Pd/C作為氧氣還原反應之電催化劑
11. 紫草酸B鎂鹽之合成研究
12. 苯醌上醯胺做為可移除指向基團在鈀金屬催化下和胺類進行碳-氫鍵活化反應形成萘醌衍生物
13. 新穎含雙亞胺基雙苯並噻唑苯酚氧衍生物的雙核鎳錯合物之合成、結構鑑定以及於二氧化碳/環氧化物共聚合反應的催化應用
14. 吸附力差異去除基質法結合表面增益效應拉曼光譜法在測量牛奶中磺胺類化合物的效果探討
15. 抗體修飾金奈米粒子結合基質輔助雷射脫附游離飛行時間質譜術應用於目標蛋白質定量分析