跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/11 08:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊敦智
研究生(外文):Yang, Tun-Chih
論文名稱:氧化層雙向選擇器於電阻式記憶體之應用
論文名稱(外文):Oxide-based bipolar selector device for resistive switching memory applications
指導教授:曾俊元
指導教授(外文):Tseng, Tseung-Yuen
口試委員:曾俊元田禮嘉林群傑
口試委員(外文):Tseng, Tseung-YuenTien, Li-ChiaLin, Chun-Chieh
口試日期:2017-07-16
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:98
中文關鍵詞:選擇器電阻式記憶體非線性選擇比
外文關鍵詞:selectorRRAMNonlinearity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:295
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,電阻式記憶體成為非常受歡迎的非揮發性記憶體在下一世代。有高密度陣列下製程是最大的吸引力;然而,在陣列中因與其他記憶體形成串連路徑產生的漏電流將會影響讀取下的有效範圍。因此,有許多輔助的元件能夠與電阻式記憶體結合同時改善此問題。選擇器是一個可行的元件在此其中。
在本文中,我們利用多層氧化層夾層於氮化鉭形成三明治結構製程選擇器原件。藉由蕭基特電子發射和F-N電子穿隧,選擇器能擁有高度選擇比在不同電壓區間下。此高度電壓對電流選擇比現象也利用能代圖分析以圖型表示。電性上的討論,透過不同種量測方式例如變溫量測也考量不同材料間的相互影響。在電阻式記憶體的章節中,多加上鈦金屬在原結構的記憶體上電極,記憶體的表現能有明顯得提升,同時鈦金屬能吸取更多氧原素幫助了原結構記憶體做為記憶燈絲更加粗曠,藉此提升記憶體轉態的次數和穩定度。在選擇器與電阻式記憶體的結合下,透過模擬來計算出元件能夠製程的最大陣列。擁有高度選擇比的選擇器輔助下,電阻式記憶體能夠克服漏電流,同時還能保有原始的轉態特性。除此之外,我們還製程了兩種不同特性的電阻式記憶體和相同的選擇器做整合來進行探討。
Recently, resistive random access memory has become one of the most promising candidates for the next generation non-volatile. For ultra-high integration density, cross-point array is the most attractive architecture. However, it is essential to suppress the sneak path current from the neighboring cells that can reduce the readout sense margin. As a result, there are several devices which is used to support the RRAM device. Selector is the one of possible solutions among of them.
In this thesis, we proposed multilayer oxide based insulator with TaN electrode in Metal-Insulator-Metal (MIM) sandwiches structure which was investigated for selector application. The highly nonlinear current-voltage characteristics are occurred by the Schottky emission and Fowler-Nordheimen tunneling in different voltage regime. The band diagram of the best sample is also schematically illustrated in each bias condition. The electrical characteristics of the selector have been investigated by using various approaches such as activation energy method and by considering factors such as material dependence. In resistive RAM part, compare with ITO/HfO2/TiN single top electrode device, Titanium capping RRAM device Pt/Ti/ITO/HfO2/TiN exhibits higher endurance performance and higher resistive switching uniformity. These substantial improvements in resistive switching properties are attributed to the thicker conductive filament by Titanium assisted to getter more oxygen from HfO2 oxide layer. In one selector one RRAM part, we try to combine both selector and RRAM device and make simulation of the maximum array which can suppress the sneak path current. By high nonlinear of selector device to suppress sneak path current, the RRAM device can maintain good performance and be realized to fabricated in cross bar array. Also, there are two 1S1R device which are different RRAM combining with the same selector is be investigated in each characteristics.
摘要 I
Abstract III
Acknowledgement V
Contents VI
Table captions X
Figure captions XI
Chapter 1 Introduction 1
1.1 Introduction to Random Access Memory 1
1.2 Volatile memory 2
1.2.1 DRAM 2
1.2.2 SRAM 2
1.3 Non-volatile memory 3
1.3.1 Flash Memory 4
1.3.2 FeRAM 5
1.3.3 MRAM 6
1.3.4 PCRAM 6
1.3.5 RRAM 7
Chapter 2 Selector and RRAM 15
2.1 Sneak path current problem 15
2.2 Solutions for sneak path current 15
2.2.1 One MOSFET transistor-one resistor 16
2.2.2 One diode-one resistor 16
2.2.3 One selector-one resistor 17
2.2.4 Self-Rectifying cell 18
2.2.5 Complementary resistive switching 19
2.3 Current Conduction Mechanisms 19
2.3.1 Direct tunneling 19
2.3.2 Fowler-Norheim tunneling 20
2.3.3 Schottky Emission 21
2.3.4 Poole-Frenkle Emission 21
2.4 Overview of RRAM 22
2.4.1 Electrical Operation in RRAM 22
(a) Forming 23
(b) Switching operation mode 23
2.4.2 Memory Characteristics in RRAM 24
(a) Resistive Ratio 24
(b) Endurance 24
2.4.3 Mechanism of Electrical Conduction in RRAM 25
(a) Filament Model 25
(b) Oxygen Vacancy Migration 25
(c) Cation Migration 26
(d) Joule Heating 26
Chapter 3 Experiment Details 34
3.1 Sample Preparation 34
3.1.1 Fabrication of TaN/ (Al2O3, TaOx, TiOx)/TaN single layer Selector Device 34
3.1.2 Fabrication of TaN/Al2O3/ (TaOx, TiOx)/ (TiOx, TaOx)/TaN Triple-layer-oxide Tunneling Selector device 35
3.1.3 Fabrication of ITO/HfO2/ (TaN, TiN) and Pt/Ti/ITO/HfO2/ (AlN) / TiN RRAM Device 36
3.1.4 Fabrication of one Selector one RRAM Device 36
3.2 Electrical Measurement 37
3.2.1 DC current-voltage Measurement 37
3.2.2 Barrier height Measurement 37
3.2.3 Endurance Test 38
Chapter 4 Triple-layer tunneling oxide-based selector 44
4.1 Motivation 44
4.2 Electrical Property of Single layer Selector 44
4.3 Electrical Property of Triple layer Selector 46
4.4 Discussion on Mechanism of Triple-oxide Tunneling layer Selector Device 47
Chapter 5 Optimization of ITO-electrode RRAM and Application of one selector one RRAM 62
5.1 Motivation 62
5.2 Electrical Property of ITO/HfO2/BE structure RRAM with TaN and TiN different Bottom Electrode 63
5.3 Electrical Property of Pt/Ti/ITO/HfO2/TiN structure RRAM 64
5.4 Discussion on Mechanism of Resistive Switching of ITO/HfO2/TiN and Pt/Ti/ITO/HfO2/TiN 66
5.5 Electrical Property of Pt/Ti/ITO/HfO2/AlN/TiN structure RRAM 67
5.6 One Selector one RRAM device 69
5.6.1 Electrical Property of one Selector one RRAM ( Selector :TaN/TaOx/TiOx/Al2O3/TaN) ,( RRAM :Pt/Ti/ITO/ HfO2/TiN) 69
5.6.2 Electrical Property of one Selector one RRAM ( Selector :TaN/TaOx/TiOx/Al2O3/TaN) ,( RRAM :Pt/Ti/ITO/ HfO2/AlN/TiN) 70
5.6.3 Discussion on Performance of one Selector one RRAM in different RRAM device 71
Chapter 6 Conclusions and Future Works 89
References 91
Appendix 98
[1] Kahng, D., & Sze, S. M. (1967). A floating gate and its application to memory devices. Bell Labs Technical Journal, 46(6), 1288-1295.
[2] Pavan, P., Bez, R., Olivo, P., & Zanoni, E. (1997). Flash memory cells-an overview. Proceedings of the IEEE, 85(8), 1248-1271.
[3] De Blauwe, J. (2002). Nanocrystal nonvolatile memory devices. IEEE Transactions on Nanotechnology, 99(1), 72-77.
[4] Bez, R., Camerlenghi, E., Modelli, A., & Visconti, A. (2003). Introduction to flash memory. Proceedings of the IEEE, 91(4), 489-502.
[5] Tanaka, H., Kido, M., Yahashi, K., Oomura, M., Katsumata, R., Kito, M., ... & Iwata, Y. (2007, June). Bit cost scalable technology with punch and plug process for ultra high density flash memory. In VLSI Technology, 2007 IEEE Symposium on (pp. 14-15). IEEE.
[6] Jang, J., Kim, H. S., Cho, W., Cho, H., Kim, J., Shim, S. I., ... & Lim, J. S. (2009, June). Vertical cell array using TCAT (Terabit Cell Array Transistor) technology for ultra high density NAND flash memory. In VLSI Technology, 2009 Symposium on (pp. 192-193). IEEE.
[7] Scott, J. F., De Araujo, P., & Carlos, A. (1989). Ferroelectric memories. Science(Washington, D. C.), 246(4936), 1400-5.
[8] Gallagher, W. J., & Parkin, S. S. (2006). Development of the magnetic tunnel junction MRAM at IBM: From first junctions to a 16-Mb MRAM demonstrator chip. IBM Journal of Research and Development, 50(1), 5-23.
[9] Meena, J. S., Sze, S. M., Chand, U., & Tseng, T. Y. (2014). Overview of emerging nonvolatile memory technologies. Nanoscale research letters, 9(1), 526.
[10] Prinz, G. A. (1998). Magnetoelectronics. Science, 282(5394), 1660-1663.
[11] Lai, S., & Lowrey, T. (2001, December). OUM-A 180 nm nonvolatile memory cell element technology for stand alone and embedded applications. In Electron Devices Meeting, 2001. IEDM'01. Technical Digest. International (pp. 36-5). IEEE.
[12] Wong, H. S. P., Raoux, S., Kim, S., Liang, J., Reifenberg, J. P., Rajendran, B., ... & Goodson, K. E. (2010). Phase change memory. Proceedings of the IEEE, 98(12), 2201-2227.
[13] Akinaga, H., & Shima, H. (2010). Resistive random access memory (ReRAM) based on metal oxides. Proceedings of the IEEE, 98(12), 2237-2251.
[14] Zhang, Z., Gao, B., Fang, Z., Wang, X., Tang, Y., Sohn, J., ... & Lo, G. Q. (2015). All-metal-nitride RRAM devices. IEEE Electron Device Letters, 36(1), 29-31.
[15] Kim, S., Jung, S., Kim, M. H., Cho, S., & Park, B. G. (2015). Resistive switching characteristics of Si3N4-based resistive-switching random-access memory cell with tunnel barrier for high density integration and low-power applications. Applied Physics Letters, 106(21), 212106.
[16] Fujimoto, M., Koyama, H., Konagai, M., Hosoi, Y., Ishihara, K., Ohnishi, S., & Awaya, N. (2006). TiO2 anatase nanolayer on TiN thin film exhibiting high-speed bipolar resistive switching. Applied Physics Letters, 89(22), 223509.
[17] Linn, E., Rosezin, R., Kügeler, C., & Waser, R. (2010). Complementary resistive switches for passive nanocrossbar memories. Nature materials, 9(5), 403-406.
[18] Huang, J. J., Tseng, Y. M., Luo, W. C., Hsu, C. W., & Hou, T. H. (2011, December). One selector-one resistor (1S1R) crossbar array for high-density flexible memory applications. In Electron Devices Meeting (IEDM), 2011 IEEE International (pp. 31-7). IEEE.
[19] Kim, T. W., Choi, H., Oh, S. H., Wang, G., Kim, D. Y., Hwang, H., & Lee, T. (2009). One Transistor–One Resistor Devices for Polymer Non‐Volatile Memory Applications. Advanced Materials, 21(24), 2497-2500.
[20] Li, Y., Lv, H., Liu, Q., Long, S., Wang, M., Xie, H., ... & Liu, M. (2013). Bipolar one diode–one resistor integration for high-density resistive memory applications. Nanoscale, 5(11), 4785-4789.
[21] Son, M., Lee, J., Park, J., Shin, J., Choi, G., Jung, S., ... & Hwang, H. (2011). Excellent Selector Characteristics of Nanoscale $\ hbox {VO} _ {2} $ for High-Density Bipolar ReRAM Applications. IEEE Electron Device Letters, 32(11), 1579-1581.
[22] Liu, X., Sadaf, S. M., Son, M., Shin, J., Park, J., Lee, J., ... & Hwang, H. (2011). Diode-less bilayer oxide (WOx–NbOx) device for cross-point resistive memory applications. Nanotechnology, 22(47), 475702.
[23] Ho Lee, J., Hwan Kim, G., Bae Ahn, Y., Woon Park, J., Wook Ryu, S., Seong Hwang, C., & Joon Kim, H. (2012). Threshold switching in Si-As-Te thin film for the selector device of crossbar resistive memory. Applied Physics Letters, 100(12), 123505.
[24] Gopalakrishnan, K., Shenoy, R. S., Rettner, C. T., Virwani, K., Bethune, D. S., Shelby, R. M., ... & Bowers, A. N. (2010, June). Highly-scalable novel access device based on mixed ionic electronic conduction (MIEC) materials for high density phase change memory (PCM) arrays. In VLSI Technology (VLSIT), 2010 Symposium on (pp. 205-206). IEEE.
[25] Shin, J., Kim, I., Biju, K. P., Jo, M., Park, J., Lee, J., ... & Hwang, H. (2011). TiO 2-based metal-insulator-metal selection device for bipolar resistive random access memory cross-point application. Journal of Applied Physics, 109(3), 033712.
[26] Bae, Y. C., Lee, A. R., Baek, G. H., Chung, J. B., Kim, T. Y., Park, J. G., & Hong, J. P. (2015). All oxide semiconductor-based bidirectional vertical pnp selectors for 3D stackable crossbar-array electronics. Scientific reports, 5, 13362.
[27] Lee, W., Park, J., Kim, S., Woo, J., Shin, J., Choi, G., ... & Hwang, H. (2012). High Current Density and Nonlinearity Combination of Selection Device Based on TaO x/TiO2/TaO x Structure for One Selector–One Resistor Arrays. ACS nano, 6(9), 8166-8172.
[28] Dong, Y., Yu, G., McAlpine, M. C., Lu, W., & Lieber, C. M. (2008). Si/a-Si core/shell nanowires as nonvolatile crossbar switches. Nano Letters, 8(2), 386-391.
[29] Tang, G. S., Zeng, F., Chen, C., Liu, H. Y., Gao, S., Li, S. Z., ... & Pan, F. (2013). Resistive switching with self-rectifying behavior in Cu/SiO x/Si structure fabricated by plasma-oxidation. Journal of Applied Physics, 113(24), 244502.
[30] Linn, E., Rosezin, R., Kügeler, C., & Waser, R. (2010). Complementary resistive switches for passive nanocrossbar memories. Nature materials, 9(5), 403-406.
[31] Majkusiak, B., Palestri, P., Schenk, A., Spinelli, A. S., Compagnoni, C. M., & Luisier, M. (2013). Modeling and simulation approaches for gate current computation. Nanoscale CMOS, 213-257.
[32] Chiu, F. C. (2014). A review on conduction mechanisms in dielectric films. Advances in Materials Science and Engineering, 2014.
[33] Zhu, Y. Q., Qian, H., Wang, L. F., Wang, L., & Tang, J. Y. (2014). Measurement and analysis of substrate leakage current of RF mems capacitive switches. Microelectronics Reliability, 54(1), 152-159.
[34] Lim, E. W., & Ismail, R. (2015). Conduction mechanism of valence change resistive switching memory: a survey. Electronics, 4(3), 586-613.
[35] Taur, Y., & Ning, T. H. (2013). Fundamentals of modern VLSI devices. Cambridge university press.
[36] Chiu, F. C. (2014). A review on conduction mechanisms in dielectric films. Advances in Materials Science and Engineering, 2014.
[37] Lee, H. Y., Chen, P. S., Wu, T. Y., Chen, Y. S., Wang, C. C., Tzeng, P. J., ... & Tsai, M. J. (2008, December). Low power and high speed bipolar switching with a thin reactive Ti buffer layer in robust HfO2 based RRAM. In Electron Devices Meeting, 2008. IEDM 2008. IEEE International (pp. 1-4). IEEE.
[38] Inoue, I. H., Yasuda, S., Akinaga, H., & Takagi, H. (2008). Nonpolar resistance switching of metal/binary-transition-metal oxides/metal sandwiches: Homogeneous/inhomogeneous transition of current distribution. Physical Review B, 77(3), 035105.
[39] Walczyk, C., Wenger, C., Sohal, R., Lukosius, M., Fox, A., Dąbrowski, J., ... & Schroeder, T. (2009). Pulse-induced low-power resistive switching in HfO2 metal-insulator-metal diodes for nonvolatile memory applications. Journal of Applied Physics, 105(11), 114103.
[40] Wong, H. S. P., Lee, H. Y., Yu, S., Chen, Y. S., Wu, Y., Chen, P. S., ... & Tsai, M. J. (2012). Metal–oxide RRAM. Proceedings of the IEEE, 100(6), 1951-1970.
[41] Szot, K., Dittmann, R., Speier, W., & Waser, R. (2007). Nanoscale resistive switching in SrTiO3 thin films. physica status solidi (RRL)-Rapid Research Letters, 1(2), R86-R88.
[42] Fujimoto, M., Koyama, H., Konagai, M., Hosoi, Y., Ishihara, K., Ohnishi, S., & Awaya, N. (2006). Ti O 2 anatase nanolayer on TiN thin film exhibiting high-speed bipolar resistive switching. Applied Physics Letters, 89(22), 223509.
[43] Yang, Y., & Lu, W. (2013). Nanoscale resistive switching devices: mechanisms and modeling. Nanoscale, 5(21), 10076-10092.
[44] Russo, U., Ielmini, D., Cagli, C., & Lacaita, A. L. (2009). Self-accelerated thermal dissolution model for reset programming in unipolar resistive-switching memory (RRAM) devices. IEEE Transactions on Electron Devices, 56(2), 193-200.
[45] Sze, S. M. (1981). Physics of semiconductor devices. New York: John Wi-ley & Sons..
[46] Woo, J., Lee, D., Cha, E., Lee, S., Park, S., & Hwang, H. (2013). Multilayer-oxide-based bidirectional cell selector device for cross-point resistive memory applications. Applied Physics Letters, 103(20), 202113.
[47] Majkusiak, B., Palestri, P., Schenk, A., Spinelli, A. S., Compagnoni, C. M., & Luisier, M. (2013). Modeling and simulation approaches for gate current computation. Nanoscale CMOS, 213-257.
[48] Mauri, A., Compagnoni, C. M., Amoroso, S., Maconi, A., Cattaneo, F., Benvenuti, A., ... & Lacaita, A. L. (2008, December). A new physics-based model for TANOS memories program/erase. In Electron Devices Meeting, 2008. IEDM 2008. IEEE International (pp. 1-4). IEEE.
[49] Lin, C. Y., Wu, C. Y., Wu, C. Y., Lee, T. C., Yang, F. L., Hu, C., & Tseng, T. Y. (2007). Effect of Top Electrode Material on Resistive Switching Properties of $\ hbox {ZrO} _ {2} $ Film Memory Devices. IEEE Electron Device Letters, 28(5), 366-368.
[50] Huang, C. Y., Huang, C. Y., Tsai, T. L., Lin, C. A., & Tseng, T. Y. (2014). Switching mechanism of double forming process phenomenon in ZrOx/HfOy bilayer resistive switching memory structure with large endurance. Applied Physics Letters, 104(6), 062901.
[51] Lin, C. Y., Wu, C. Y., Wu, C. Y., Lee, T. C., Yang, F. L., Hu, C., & Tseng, T. Y. (2007). Effect of Top Electrode Material on Resistive Switching Properties of $\ hbox {ZrO} _ {2} $ Film Memory Devices. IEEE Electron Device Letters, 28(5), 366-368.
[52] Flocke, A., & Noll, T. G. (2007, September). Fundamental analysis of resistive nano-crossbars for the use in hybrid Nano/CMOS-memory. In Solid State Circuits Conference, 2007. ESSCIRC 2007. 33rd European (pp. 328-331). IEEE.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊