|
[1] Kahng, D., & Sze, S. M. (1967). A floating gate and its application to memory devices. Bell Labs Technical Journal, 46(6), 1288-1295. [2] Pavan, P., Bez, R., Olivo, P., & Zanoni, E. (1997). Flash memory cells-an overview. Proceedings of the IEEE, 85(8), 1248-1271. [3] De Blauwe, J. (2002). Nanocrystal nonvolatile memory devices. IEEE Transactions on Nanotechnology, 99(1), 72-77. [4] Bez, R., Camerlenghi, E., Modelli, A., & Visconti, A. (2003). Introduction to flash memory. Proceedings of the IEEE, 91(4), 489-502. [5] Tanaka, H., Kido, M., Yahashi, K., Oomura, M., Katsumata, R., Kito, M., ... & Iwata, Y. (2007, June). Bit cost scalable technology with punch and plug process for ultra high density flash memory. In VLSI Technology, 2007 IEEE Symposium on (pp. 14-15). IEEE. [6] Jang, J., Kim, H. S., Cho, W., Cho, H., Kim, J., Shim, S. I., ... & Lim, J. S. (2009, June). Vertical cell array using TCAT (Terabit Cell Array Transistor) technology for ultra high density NAND flash memory. In VLSI Technology, 2009 Symposium on (pp. 192-193). IEEE. [7] Scott, J. F., De Araujo, P., & Carlos, A. (1989). Ferroelectric memories. Science(Washington, D. C.), 246(4936), 1400-5. [8] Gallagher, W. J., & Parkin, S. S. (2006). Development of the magnetic tunnel junction MRAM at IBM: From first junctions to a 16-Mb MRAM demonstrator chip. IBM Journal of Research and Development, 50(1), 5-23. [9] Meena, J. S., Sze, S. M., Chand, U., & Tseng, T. Y. (2014). Overview of emerging nonvolatile memory technologies. Nanoscale research letters, 9(1), 526. [10] Prinz, G. A. (1998). Magnetoelectronics. Science, 282(5394), 1660-1663. [11] Lai, S., & Lowrey, T. (2001, December). OUM-A 180 nm nonvolatile memory cell element technology for stand alone and embedded applications. In Electron Devices Meeting, 2001. IEDM'01. Technical Digest. International (pp. 36-5). IEEE. [12] Wong, H. S. P., Raoux, S., Kim, S., Liang, J., Reifenberg, J. P., Rajendran, B., ... & Goodson, K. E. (2010). Phase change memory. Proceedings of the IEEE, 98(12), 2201-2227. [13] Akinaga, H., & Shima, H. (2010). Resistive random access memory (ReRAM) based on metal oxides. Proceedings of the IEEE, 98(12), 2237-2251. [14] Zhang, Z., Gao, B., Fang, Z., Wang, X., Tang, Y., Sohn, J., ... & Lo, G. Q. (2015). All-metal-nitride RRAM devices. IEEE Electron Device Letters, 36(1), 29-31. [15] Kim, S., Jung, S., Kim, M. H., Cho, S., & Park, B. G. (2015). Resistive switching characteristics of Si3N4-based resistive-switching random-access memory cell with tunnel barrier for high density integration and low-power applications. Applied Physics Letters, 106(21), 212106. [16] Fujimoto, M., Koyama, H., Konagai, M., Hosoi, Y., Ishihara, K., Ohnishi, S., & Awaya, N. (2006). TiO2 anatase nanolayer on TiN thin film exhibiting high-speed bipolar resistive switching. Applied Physics Letters, 89(22), 223509. [17] Linn, E., Rosezin, R., Kügeler, C., & Waser, R. (2010). Complementary resistive switches for passive nanocrossbar memories. Nature materials, 9(5), 403-406. [18] Huang, J. J., Tseng, Y. M., Luo, W. C., Hsu, C. W., & Hou, T. H. (2011, December). One selector-one resistor (1S1R) crossbar array for high-density flexible memory applications. In Electron Devices Meeting (IEDM), 2011 IEEE International (pp. 31-7). IEEE. [19] Kim, T. W., Choi, H., Oh, S. H., Wang, G., Kim, D. Y., Hwang, H., & Lee, T. (2009). One Transistor–One Resistor Devices for Polymer Non‐Volatile Memory Applications. Advanced Materials, 21(24), 2497-2500. [20] Li, Y., Lv, H., Liu, Q., Long, S., Wang, M., Xie, H., ... & Liu, M. (2013). Bipolar one diode–one resistor integration for high-density resistive memory applications. Nanoscale, 5(11), 4785-4789. [21] Son, M., Lee, J., Park, J., Shin, J., Choi, G., Jung, S., ... & Hwang, H. (2011). Excellent Selector Characteristics of Nanoscale $\ hbox {VO} _ {2} $ for High-Density Bipolar ReRAM Applications. IEEE Electron Device Letters, 32(11), 1579-1581. [22] Liu, X., Sadaf, S. M., Son, M., Shin, J., Park, J., Lee, J., ... & Hwang, H. (2011). Diode-less bilayer oxide (WOx–NbOx) device for cross-point resistive memory applications. Nanotechnology, 22(47), 475702. [23] Ho Lee, J., Hwan Kim, G., Bae Ahn, Y., Woon Park, J., Wook Ryu, S., Seong Hwang, C., & Joon Kim, H. (2012). Threshold switching in Si-As-Te thin film for the selector device of crossbar resistive memory. Applied Physics Letters, 100(12), 123505. [24] Gopalakrishnan, K., Shenoy, R. S., Rettner, C. T., Virwani, K., Bethune, D. S., Shelby, R. M., ... & Bowers, A. N. (2010, June). Highly-scalable novel access device based on mixed ionic electronic conduction (MIEC) materials for high density phase change memory (PCM) arrays. In VLSI Technology (VLSIT), 2010 Symposium on (pp. 205-206). IEEE. [25] Shin, J., Kim, I., Biju, K. P., Jo, M., Park, J., Lee, J., ... & Hwang, H. (2011). TiO 2-based metal-insulator-metal selection device for bipolar resistive random access memory cross-point application. Journal of Applied Physics, 109(3), 033712. [26] Bae, Y. C., Lee, A. R., Baek, G. H., Chung, J. B., Kim, T. Y., Park, J. G., & Hong, J. P. (2015). All oxide semiconductor-based bidirectional vertical pnp selectors for 3D stackable crossbar-array electronics. Scientific reports, 5, 13362. [27] Lee, W., Park, J., Kim, S., Woo, J., Shin, J., Choi, G., ... & Hwang, H. (2012). High Current Density and Nonlinearity Combination of Selection Device Based on TaO x/TiO2/TaO x Structure for One Selector–One Resistor Arrays. ACS nano, 6(9), 8166-8172. [28] Dong, Y., Yu, G., McAlpine, M. C., Lu, W., & Lieber, C. M. (2008). Si/a-Si core/shell nanowires as nonvolatile crossbar switches. Nano Letters, 8(2), 386-391. [29] Tang, G. S., Zeng, F., Chen, C., Liu, H. Y., Gao, S., Li, S. Z., ... & Pan, F. (2013). Resistive switching with self-rectifying behavior in Cu/SiO x/Si structure fabricated by plasma-oxidation. Journal of Applied Physics, 113(24), 244502. [30] Linn, E., Rosezin, R., Kügeler, C., & Waser, R. (2010). Complementary resistive switches for passive nanocrossbar memories. Nature materials, 9(5), 403-406. [31] Majkusiak, B., Palestri, P., Schenk, A., Spinelli, A. S., Compagnoni, C. M., & Luisier, M. (2013). Modeling and simulation approaches for gate current computation. Nanoscale CMOS, 213-257. [32] Chiu, F. C. (2014). A review on conduction mechanisms in dielectric films. Advances in Materials Science and Engineering, 2014. [33] Zhu, Y. Q., Qian, H., Wang, L. F., Wang, L., & Tang, J. Y. (2014). Measurement and analysis of substrate leakage current of RF mems capacitive switches. Microelectronics Reliability, 54(1), 152-159. [34] Lim, E. W., & Ismail, R. (2015). Conduction mechanism of valence change resistive switching memory: a survey. Electronics, 4(3), 586-613. [35] Taur, Y., & Ning, T. H. (2013). Fundamentals of modern VLSI devices. Cambridge university press. [36] Chiu, F. C. (2014). A review on conduction mechanisms in dielectric films. Advances in Materials Science and Engineering, 2014. [37] Lee, H. Y., Chen, P. S., Wu, T. Y., Chen, Y. S., Wang, C. C., Tzeng, P. J., ... & Tsai, M. J. (2008, December). Low power and high speed bipolar switching with a thin reactive Ti buffer layer in robust HfO2 based RRAM. In Electron Devices Meeting, 2008. IEDM 2008. IEEE International (pp. 1-4). IEEE. [38] Inoue, I. H., Yasuda, S., Akinaga, H., & Takagi, H. (2008). Nonpolar resistance switching of metal/binary-transition-metal oxides/metal sandwiches: Homogeneous/inhomogeneous transition of current distribution. Physical Review B, 77(3), 035105. [39] Walczyk, C., Wenger, C., Sohal, R., Lukosius, M., Fox, A., Dąbrowski, J., ... & Schroeder, T. (2009). Pulse-induced low-power resistive switching in HfO2 metal-insulator-metal diodes for nonvolatile memory applications. Journal of Applied Physics, 105(11), 114103. [40] Wong, H. S. P., Lee, H. Y., Yu, S., Chen, Y. S., Wu, Y., Chen, P. S., ... & Tsai, M. J. (2012). Metal–oxide RRAM. Proceedings of the IEEE, 100(6), 1951-1970. [41] Szot, K., Dittmann, R., Speier, W., & Waser, R. (2007). Nanoscale resistive switching in SrTiO3 thin films. physica status solidi (RRL)-Rapid Research Letters, 1(2), R86-R88. [42] Fujimoto, M., Koyama, H., Konagai, M., Hosoi, Y., Ishihara, K., Ohnishi, S., & Awaya, N. (2006). Ti O 2 anatase nanolayer on TiN thin film exhibiting high-speed bipolar resistive switching. Applied Physics Letters, 89(22), 223509. [43] Yang, Y., & Lu, W. (2013). Nanoscale resistive switching devices: mechanisms and modeling. Nanoscale, 5(21), 10076-10092. [44] Russo, U., Ielmini, D., Cagli, C., & Lacaita, A. L. (2009). Self-accelerated thermal dissolution model for reset programming in unipolar resistive-switching memory (RRAM) devices. IEEE Transactions on Electron Devices, 56(2), 193-200. [45] Sze, S. M. (1981). Physics of semiconductor devices. New York: John Wi-ley & Sons.. [46] Woo, J., Lee, D., Cha, E., Lee, S., Park, S., & Hwang, H. (2013). Multilayer-oxide-based bidirectional cell selector device for cross-point resistive memory applications. Applied Physics Letters, 103(20), 202113. [47] Majkusiak, B., Palestri, P., Schenk, A., Spinelli, A. S., Compagnoni, C. M., & Luisier, M. (2013). Modeling and simulation approaches for gate current computation. Nanoscale CMOS, 213-257. [48] Mauri, A., Compagnoni, C. M., Amoroso, S., Maconi, A., Cattaneo, F., Benvenuti, A., ... & Lacaita, A. L. (2008, December). A new physics-based model for TANOS memories program/erase. In Electron Devices Meeting, 2008. IEDM 2008. IEEE International (pp. 1-4). IEEE. [49] Lin, C. Y., Wu, C. Y., Wu, C. Y., Lee, T. C., Yang, F. L., Hu, C., & Tseng, T. Y. (2007). Effect of Top Electrode Material on Resistive Switching Properties of $\ hbox {ZrO} _ {2} $ Film Memory Devices. IEEE Electron Device Letters, 28(5), 366-368. [50] Huang, C. Y., Huang, C. Y., Tsai, T. L., Lin, C. A., & Tseng, T. Y. (2014). Switching mechanism of double forming process phenomenon in ZrOx/HfOy bilayer resistive switching memory structure with large endurance. Applied Physics Letters, 104(6), 062901. [51] Lin, C. Y., Wu, C. Y., Wu, C. Y., Lee, T. C., Yang, F. L., Hu, C., & Tseng, T. Y. (2007). Effect of Top Electrode Material on Resistive Switching Properties of $\ hbox {ZrO} _ {2} $ Film Memory Devices. IEEE Electron Device Letters, 28(5), 366-368. [52] Flocke, A., & Noll, T. G. (2007, September). Fundamental analysis of resistive nano-crossbars for the use in hybrid Nano/CMOS-memory. In Solid State Circuits Conference, 2007. ESSCIRC 2007. 33rd European (pp. 328-331). IEEE.
|