跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.110) 您好!臺灣時間:2025/09/29 01:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃賢平
研究生(外文):Hsien-Ping Huang
論文名稱:以石墨烯改質黏土奈米混成於酚醛環氧樹脂複合材料之阻燃性研究
論文名稱(外文):Study on the Flammability of Novolac Epoxy Resin/Graphene-Intercalated-Modified Clays Nanocomposites
指導教授:蔡宗燕
指導教授(外文):Tsung-Yen Tsai
學位類別:碩士
校院名稱:中原大學
系所名稱:奈米科技碩士學位學程
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:121
中文關鍵詞:環氧樹脂銅箔基板石墨烯阻燃性
外文關鍵詞:EpoxyCopper Clad LaminateGrapheneFlame retardant
相關次數:
  • 被引用被引用:4
  • 點閱點閱:762
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以不同層數的石墨烯作為改質劑之一,分別與天然黏土作為分散載體與補強材,期望同時利用黏土層間的結晶水與氫氧基受熱脫水,降低熱的釋放量,氣化的水蒸氣可以降低氧含量,天然黏土與石墨烯的片狀結構阻隔熱傳與氧氣的提供,另外石墨烯豐富的雙鍵在燃燒時產生自由基可以捕捉高分子熱裂解產生的氫自由基與氫氧自由基,以達到阻燃的效果。在本研究中,將石墨烯先進行官能化,並以拉曼光譜(Raman)與熱重分析(TGA)儀檢測了解官能化前後的差異。接著將官能化石墨烯、天然黏土與改質劑進行有機改質後,利用廣角X光繞射儀(WXRD)、熱重分析儀(TGA)與紅外線光譜儀(FTIR)了解改質前後黏土的層間距變化,以及改質劑進入黏土層間中的比例。之後將改質後黏土與酚醛環氧樹脂進行交聯反應製成奈米級複合材料,藉由廣角X光繞射儀(WXRD)與穿透式電子顯微鏡驗證黏土在酚醛環氧樹脂中的分散型態,並利用熱重分析儀(TGA)與動態機械分析儀(DMA)了檢測奈米複合材料的熱裂解溫度(Td)及複材的玻璃轉移溫度(Tg)的變化。最後利用極限氧指數儀(LOI)、圓錐量熱儀(Cone calorimeter)來測試複材的耐燃性,並將效果最好的配方實際應用在銅箔基板的製程,探討各項性質的變化與UL-94的阻燃性。結果發現,3wt%CL120-PI-BEN-OGNS-300之複材其耐燃效果最佳,且製成之銅箔基板也通過各項數值測試及UL-94達到V1耐燃等級。

Functionalized inorganic layered material (clay) based on modification system composed by Benzalkonium-N-methyl pryrrolidine-graphene, were designed and fabricated in this study to synthesize novolac cured epoxy nanocomposites. Clays, as dispersed template, were modified by methyl pyridine functionalized graphene materials, such as multilayers and mono layer graphene intercalants. There are functionalized graphene materials to enhance the fire retardant of resulting nanocomposites. The functionalized graphene characterized by Raman spectroscopy, and thermo-gravimetric analysis (TGA) was applied to confirm the difference functionalities of graphene. The modified clays were characterized by wide-angle X-ray diffraction (WAXD), TGA and Fourier transform infrared spectroscopy (FTIR) to confirm the inclusion of modified agents into clay layers. The dispersion morphology of clay in the novolac cured epoxy resin was analyzed by WXRD and transmission electron microscopy (TEM). TGA and dynamic mechanical analysis (DMA) were used to measure the thermal and mechanical properties. Finally, limiting oxygen index (LOI) and cone calorimeter test were applied to evaluate the flammability of these nanocomposites. The best composites of modified clay/novolac cured epoxy nanocomposites were selected to make copper clad laminate (CCL) and discussed the properties and flammability. Consequence, 3wt% CL120-PI-BEN-OGNS-Epoxy nanocomposites has shown the best flammability. Apply this result to make the copper clad laminate which has passed the UL-94-V1 test.

目錄
摘要 i
Abstract ii
謝誌 iii
目錄 iv
表目錄 vi
圖目錄 vii
第一章 緒論 1
1-1 前言 1
1-2 文獻回顧 2
1-2-1 天然黏土/石墨烯文獻回顧 2
1-2-2 環氧樹脂/石墨烯文獻回顧 4
1-3 專利搜索與分析 6
1-4 產業資訊 8
1-5 研究動機 13
第二章 基礎理論 14
2-1石墨烯 14
2-1-1石墨烯介紹 14
2-1-2石墨烯的製備 15
2-1-3石墨烯的應用 18
2-2 天然黏土簡介 20
2-3 環氧樹脂 23
2-3-1 酚醛樹脂 23
2-3-2 環氧樹脂 25
2-3-3 環氧樹脂及其特性與應用 27
2-4 奈米複合材料 29
2-4-1 有機/無機複合材料製備方法 29
2-4-2 黏土於複材之分散型態 34
2-5 銅箔基板 37
2-5-1 銅箔基板的組成 40
2-5-2 銅箔基板的製作過程 42
2-6 高分子燃燒原理 44
2-6-1 高分子燃燒機制 46
2-6-2 阻燃劑與阻燃機制 48
第三章 實驗部分 53
3-1 實驗藥品 53
3-2 實驗設備 55
3-3 實驗儀器 56
3-4 實驗步驟 59
3-4-1 石墨烯之官能化 59
3-4-2 黏土純化 60
3-4-3 官能化石墨烯插層黏土 61
3-4-4 酚醛環氧樹脂製成 62
3-4-5 酚醛環氧樹脂銅箔基板 63
第四章 結果與討論 65
4-1 石墨烯的有機化鑑定與性質探討 65
4-2 官能化石墨烯改質型黏土結構鑑定 77
4-3 酚醛環氧樹脂奈米複合材料性質之檢測 84
4-3-1 膠化時間(Gel Test) 85
4-3-2 奈米複合材料之分散性分析 87
4-3-3 奈米複合材料之熱性質分析 90
4-3-4 奈米複合材料之阻燃性檢測與分析 97
4-4 銅箔基板性質研究 100
4-4-1 物性分析 102
4-4-2 耐燃測試(UL-94) 106
第五章 結論與未來展望 109
第六章 參考文獻 110

表目錄
表2-1 黏土的種類分類 22
表2-2 印刷電路板分類表 38
表2-3銅箔基板一覽表 39
表4-1 石墨烯有機化前後性質比較表 69
表4-2 XPS石墨烯比較表 70
表4-2 無機層材之官能基對照表 80
表4-3 改質型黏土插層量數據 83
表4-4 膠化時間 86
表4-5 TGA數據 93
表4-6 DMA數據 96
表4-7 LOI數據 98
表4-8 圓錐測量儀數據 99
表4-9銅箔基板物性分析整理表 104
表4-10 銅箔基板三點彎曲機械性質整理表 105
表4-11 各項銅箔基板UL-94結果整理表 108

圖目錄
圖1-1 台灣相關專利利年公告數趨勢整理圖 6
圖1-2 美國相關專利利年公告數趨勢整理圖 7
圖1-3 印刷電路板產業鏈簡介 9
圖1-4 全球銅箔基板生產統計 11
圖1-5 2012年各類材質銅箔基板生產比重分析 12
圖1-6 2012年各國材質銅箔基板生產比重分析 12
圖2-1 不同天然黏土構造圖 21
圖2-1 二羥苯甲烷的三種異構物 23
圖 2-3 四級銨鹽改質法示意圖 31
圖2-4介面活性劑微胞法示意圖 32
圖2-5驅動力概念示意圖 32
圖2-6兩性介面活性劑電荷互斥法 示意圖 33
圖2-7 (A) 傳統的黏土/高分子複合材料 36
圖2-8 (B) 島型插層 (C) 海型插層 分散型態示意圖 36
圖2-9 (D) 島型脫層 (E) 海型脫層 分散型態示意圖 36
圖2-10 銅箔基板製作過程 43
圖2-11 磷系高分子形成焦炭層反應式 51
圖3-1 石墨烯官能化機制圖 59
圖4-1-1 石墨烯在水中的分布情形,(A) GNS-E、(B) GNS-300 66
圖4-1-2 石墨烯的接觸角測試,(A) GNS-E、(B) OGNS-E 66
圖4-1-3 拉曼光譜 68
圖4-1-4 有機改質劑N-甲基吡咯接枝至石墨烯示意圖 68
圖4-1-5 XRD圖譜 (A) OGNS-E、(B) OGNS-300 69
圖4-1-6 XPS GNS-E (A) C譜 (B) C譜分峰 (C) O譜 71
圖4-1-7 XPS OGNS-E(A) C譜 (B) C譜分峰 (C) N譜 72
圖4-1-8 XPS GNS-300 (A) C譜 (B) C譜分峰 (C) O譜 73
圖4-1-9 XPS OGNS-300 (A) C譜 (B) C譜分峰 (C) N譜 74
圖4-1-10 TGA圖譜 (a) GNS-E (b) OGNS-E 76
圖4-1-11 TGA圖譜 (a) GNS-300 (b) OGNS-300 76
圖4-2-1 XRD 圖譜 78
(A)CL120-PI-BEN-OGNS-E、(B) CL120-PI-BEN-OGNS-300 78
圖4-2-2 改質劑PI與BEN撐開黏土層間示意圖 78
圖4-2-3 FTIR 改質前後CL120圖譜 80
圖4-2-4 SEM(左) &; EDS(右)圖譜 CL120-PI-BEN-OGNS-E 81
圖4-2-5 SEM(左) &; EDS(右)圖譜 CL120-PI-BEN-OGNS-300 81
圖4-2-6 TGA 圖譜 純黏土與改質型黏土 83
圖4-3-1 FTIR圖譜 酚醛環氧樹脂開環反應之FT-IR圖 86
圖4-3-2 XRD圖譜 CL120-PI-BEN-OGNS-E-Epoxy 88
圖4-3-3 XRD圖譜 CL120-PI-BEN-OGNS-300-Epoxy 88
圖4-3-4 酚醛環氧樹脂奈米複合材料示意圖 88
圖4-3-5 TEM圖譜 3wt%CL120-PI-BEN-OGNS-E-Epoxy 89
圖4-3-6 TEM圖譜 3wt%CL120-PI-BEN-OGNS-300-Epoxy 89
圖4-3-7 TGA圖譜 (a) OGNS-E、(b) OGNS-300、(c) Epoxy 91
圖4-3-8 TGA圖譜 CL120-PI-BEN-OGNS-E-Epoxy 92
圖4-3-9 TGA圖譜 CL120-PI-BEN-OGNS-300-Epoxy 92
圖4-3-10 DMA Storage Module圖譜 CL120-PI-BEN-OGNS-E-Epoxy 94
圖4-3-11 DMA Tan Delta圖譜 CL120-PI-BEN-OGNS-E-Epoxy 94
圖4-3-12 DMA Storage Module圖譜 CL120-PI-BEN-OGNS-300-Epoxy 95
圖4-3-13 DMA Tan Delta圖譜 CL120-PI-BEN-OGNS-300-Epoxy 95
圖4-3-14 LOI 燃燒後殘餘物 98


[1]C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the Elastic Properties and Intrinsic Strength”, Science, vol. 321, 385-388, 2008.
[2]J. Longun, G. Walker, and J. O. Iroh, “Surface and mechanical properties of graphene–clay/polyimide composites and thin films”, Carbon, vol. 63, 9-22, 2013.
[3]C. Ruiz-Garcia, J. Perez-Carvajal, A. Berenguer-Murcia, M. Darder, P. Aranda, D. Cazorla-Amoros, and E. Ruiz-Hitzky, “Clay-supported graphene materials: application to hydrogen storage”, Phys. Chem. Chem. Phys., vol. 15, no. 42, 18635-18641, Nov 14, 2013.
[4]S. Tan, X. Cai, L. Liu, A. Yu, L. Huang, and Y. Xie, “Preparation and application of graphene/clay composite adsorbent material for wastewater treatment“, China Patent, CN2013-10067204, 2013.
[5]I. Zaman, S. Araby, A. Khalid, and B. Manshoor, “Moisture Absorption and Diffusivity of Epoxy Filled Layered-Structure Nanocomposite”, Advances in Environmental Biology, vol. 8, 2626-2631, 2014.
[6]X. J. Shen, Y. Liu, H. M. Xiao, Q. P. Feng, Z. Z. Yu, and S. Y. Fu, “The reinforcing effect of graphene nanosheets on the cryogenic mechanical properties of epoxy resins”, Composites Science and Technology, vol. 72, no. 13, 1581-1587, 2012.
[7]J. H. Troitzsch, “Fire gas toxicity and pollutants in fires: the role of flame retardants in Flame Retardants“, Interscience Communications Ltd,, 2000.
[8]X. Wang, W. Xing, X. Feng, B. Yu, H. Lu, L. Song, and Y. Hu, “The effect of metal oxide decorated graphene hybrids on the improved thermal stability and the reduced smoke toxicity in epoxy resins”, Chemical Engineering Journal, vol. 250, 214-221, 2014.
[9]P. Ming, Y. Zhang, J. Bao, G. Liu, Z. Li, L. Jiang, and Q. Cheng, “Bioinspired highly electrically conductive graphene–epoxy layered composites”, RSC Advances, vol. 5, no. 28, 22283-22288, 2015.
[10]B. Tang, G. Hu, H. Gao, and L. Hai, “Application of graphene as filler to improve thermal transport property of epoxy resin for thermal interface materials”, International Journal of Heat and Mass Transfer, vol. 85, 420-429, 2015.
[11]“產業價值鏈資訊平台“, http://ic.tpex.org.tw/introduce.php?ic=L000,
[12]張致吉“從銅箔基板產品市占率看我國印刷電路板競爭力“, http://ieknet.iek.org.tw/BookView.do?rptidno=388184933, IEK產業情報網, 2013,
[13]S. Y. Lu, and I. Hamerton, “Recent developments in the chemistry of halogen-free flame retardant polymers”, Progress in Polymer Science, vol. 27, 1661-1712, 2002.
[14]O. Mauerer, “New reactive, halogen-free flame retardant system for epoxy resins”, Polymer Degradation and Stability, vol. 90, no. 3, 70-73, 2005.
[15]X. Wang, L. Song, H. Yang, H. Lu, and Y. Hu, “Synergistic Effect of Graphene on Antidripping and Fire Resistance of Intumescent Flame Retardant Poly(butylene succinate) Composites”, Industrial &; Engineering Chemistry Research, vol. 50, no. 9, 5376-5383, 2011.
[16]G. Huang, H. Liang, Y. Wang, X. Wang, J. Gao, and Z. Fei, “Combination effect of melamine polyphosphate and graphene on flame retardant properties of poly(vinyl alcohol)”, Materials Chemistry and Physics, vol. 132, no. 2-3, 520-528, 2012.
[17]G. M. Wu, B. Schartel, H. Bahr, M. Kleemeier, D. Yu, and A. Hartwig, “Experimental and quantitative assessment of flame retardancy by the shielding effect in layered silicate epoxy nanocomposites”, Combustion and Flame, vol. 159, no. 12, 3616-3623, 2012.
[18]Z. Matusinovic, and C. A. Wilkie, “Fire retardancy and morphology of layered double hydroxide nanocomposites: a review”, Journal of Materials Chemistry, vol. 22, no. 36, 18701-18704, 2012.
[19]C. F. Kuan, W. J. Chen, Y. L. Li, C. H. Chen, H. C. Kuan, and C. L. Chiang, “Flame retardance and thermal stability of carbon nanotube epoxy composite prepared from sol–gel method”, Journal of Physics and Chemistry of Solids, vol. 71, no. 4, 539-543, 2010.
[20]Y. Shi, and L.-J. Li, “Chemically modified graphene: flame retardant or fuel for combustion?”, J. Mater. Chem., vol. 21, no. 10, 3277-3279, 2011.
[21]D. Konatham, and A. Striolo, “Molecular Design of Stable Graphene Nanosheets Dispersions”, Nano Letters, vol. 8, no. 12, 4630-4641, 2008.
[22]A. K. Geim, and A. H. MacDonald, “Graphene: Exploring carbon flatland”, Physics Today, vol. 60, no. 8, 35-41, 2007.
[23]W. A. de Heer, C. Berger, X. Wu, P. N. First, E. H. Conrad, X. Li, T. Li, M. Sprinkle, J. Hass, M. L. Sadowski, M. Potemski, and G. Martinez, “Epitaxial graphene”, Solid State Communications, vol. 143, no. 1-2, 92-100, 2007.
[24]P. W. Sutter, J. I. Flege, and E. A. Sutter, “Epitaxial graphene on ruthenium”, Nature materials, vol. 7, 406-411, 2008.
[25]D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. B. Alemany, W. Lu, and J. M. Tour, “Improved Synthesis of Graphene Oxide”, ACS Nano, vol. 4, 4806-4814, 2010.
[26]H. M. Wang, Y. H. Wu, Z. H. Ni, and Z. X. Shen, “Electronic transport and layer engineering in multilayer graphene structures”, Applied Physics Letters, vol. 92, no. 5, 053504-053504-3, 2008.
[27]S. M. Lyth, H. Shao, J. Liu, K. Sasaki, and E. Akiba, “Hydrogen adsorption on graphene foam synthesized by combustion of sodium ethoxide”, International Journal of Hydrogen Energy, vol. 39, no. 1, 376-380, 2014.
[28]H. Wang, Y. Wang, Z. Hu, and X. Wang, “Cutting and unzipping multiwalled carbon nanotubes into curved graphene nanosheets and their enhanced supercapacitor performance”, ACS Appl Mater Interfaces, vol. 4, no. 12, 6827-6834, Dec, 2012.
[29]Y. Hernandez, M. Lotya, V. Nicolosi, F. M. Blighe, S. De, G. Duesberg, and J. N. Coleman, “Liquid phase production of graphene by exfoliation of graphite in surfactant-water solutions”, J. Am. Chem. Soc., vol. 131, no. 10, 3611-3620, 2009.
[30]L. G. D. Arco, Y. Zhang, A. Kumar, and C. Zhou, “Synthesis, Transfer, and Devices of Single- and Few-Layer Graphene by Chemical Vapor Deposition”, IEEE Transactions on Nanotechnology, vol. 8, no. 2, 135-138, 2009.
[31]D. M. .Moore, and R. C. Reynolds, “X-ray Diffraction and the Identification and Analysis of Clay Minerals. “, Oxford University Press, 1989.
[32]Grim.R.E., “Clay mineralogy”, New York:McGraw-Hill, 1968.
[33]蔡宗燕編撰, “有機無機混成教材“.
[34]B.Ellis, “Chemistry and Technology of Epoxy Resins“, SPRINGER-SCIENCE+BUSINESS MEDIA, B.V., 1993.
[35]R. Sanctuary, J. Baller, B. Zielinski, N. Becker, J. K. Kruger, M. Philipp, U. Muller, and M. Ziehmer, “Influence of Al(2)O(3) nanoparticles on the isothermal cure of an epoxy resin”, Journal of Physics: Condensed Matter, vol. 21, no. 3, 035118, Jan 21, 2009.
[36]Z. K. Chen, G. Yang, and J. P. Yang, “Simultaneously increasing cryogenic strength, ductility and impact resistance of epoxy resins modified by n-butyl glycidyl ether”, Polymer, vol. 50, 1316-1323, 2009.
[37]L. Chen, S. Chai, K. Liu, N. Ning, J. Gao, Q. Liu, F. Chen, and Q. Fu, “Enhanced epoxy/silica composites mechanical properties by introducing graphene oxide to the interface”, ACS Appl Mater Interfaces, vol. 4, no. 8, 4398-4404, Aug, 2012.
[38]D. C. Lee, and L. W. Jang, “Characterization of epoxy–clay hybrid composite prepared by emulsion polymerization ”, Journal of Applied Polymer Science, vol. 68, 1997-2005, 1998.
[39]X. Kornmanna, H. Lindbergb, and L. A. Berglund, “Synthesis of epoxy–clay nanocomposites. Influence of the nature of the curing agent on structure”, Polymer, vol. 42, 4493-4499, 2001.
[40]G. D. Gatta, S. Masci, and R. Vivani, “Dimensional reduction in zirconium phosphate; from layers to ribbons to chains”, Journal of Materials Chemistry, vol. 13, no. 5, 1215-1222, 2003.
[41]H. J. Sue, “Epoxy Nanocomposites Based on the Synthetic α-Zirconium Phosphate Layer Structure”, Chemistry of Materials, vol. 16, 242-249, 2004.
[42]A. I. Bortun, L. N. Bortun, and A. Clearfield, “Hydrothermal Synthesis of Sodium Zirconium Silicates and Characterization of Their Properties”, Chemistry of Materials, vol. 9, 1854-1864, 1997.
[43]Y. Kojima, A. Usuki, M. Kawasumi, A. Okada, T. Kurauchi, and O. Kamigaito, “One-pot synthesis of nylon 6–clay hybrid”, Science Part A: Polymer Chemistry, vol. 31, no. 7, 1755-1758, 1993.
[44]D. Kong, and C. E. Park, “Real Time Exfoliation Behavior of Clay Layers in Epoxy−Clay Nanocomposites”, Chemistry of Materials, vol. 15, 419-424, 2003.
[45]C. S. Triantafillidis, P. C. LeBaron, and T. J. Pinnavaia, “Homostructured Mixed Inorganic−Organic Ion Clays: A New Approach to Epoxy Polymer−Exfoliated Clay Nanocomposites with a Reduced Organic Modifier Content”, Chemistry of Materials, vol. 14, 4088-4095, 2002.
[46]A. Ghanbari, “A novel approach to control thermal degradation of PET/organoclay nanocomposites and improve clay exfoliation”, Polymer, vol. 54, no. 4, 1361-1369, 2013.
[47]M. A. Hillmyer, P. M. Lipic, D. A. Hajduk, K. Almdal, and F. S. Bates, “Self-Assembly and Polymerization of Epoxy Resin-Amphiphilic Block Copolymer Nanocomposites”, Journal of the American Chemical Society vol. 119, 2749-2750, 1997.
[48]J. H. Park, and S. C. Jana, “Mechanism of Exfoliation of Nanoclay Particles in Epoxy−Clay Nanocomposites”, Macromolecules, vol. 36, 2758-2768, 2003.
[49]張國揚, “鹵素難燃劑應用最新法規動向,化工資訊,7卷,12期“, 1993.
[50]M. Maggini, G. Scorrano, and M. Prato, “Addition of azomethine ylides to C60 synthesis, characterization, and functionalization of fullerene pyrrolidines”, J. Am. Chem. Soc. , vol. 115, 9798-9799, 1993.
[51]G. E. Zaikov, and S. M. Lomakin, “New aspects of ecologically friendly polymer flame retardant systems”, Polymer Degradation and Stability, vol. 54, 223-233, 1996.
[52]P. A. Denis, and F. Iribarne, “The 1,3 dipolar cycloaddition of azomethine ylides to graphene, single wall carbon nanotubes, and C60”, International Journal of Quantum Chemistry, vol. 110, no. 9, 1764-1771, 2010.
[53]P. Lian, X. Zhu, S. Liang, Z. Li, W. Yang, and H. Wang, “Large reversible capacity of high quality graphene sheets as an anode material for lithium-ion batteries”, Electrochimica Acta, vol. 55, no. 12, 3909-3914, 2010.
[54]李欣錞, “以雙螺桿製程開發石墨烯/聚烯烴”, 中原大學碩士論文, 2014.
[55]M. Fang, K. Wang, H. Lu, Y. Yang, and S. Nutt, “Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites”, Journal of Materials Chemistry, vol. 19, no. 38, 7098–7105, 2009.
[56]S. L. Kuo, W. R. Liu, and H. C. Wu, “Lithium Storage Behavior of Graphene Nanosheets-based Materials”, Journal of the Chinese Chemical Society, vol. 59, no. 10, 1220-1225, 2012.
[57]S. Calderon V, A. Cavaleiro, and S. Carvalho, “Chemical and structural characterization of ZrCNAg coatings: XPS, XRD and Raman spectroscopy”, Applied Surface Science, vol. 346, 240-247, 2015.
[58]黃俊傑, “具難燃性酚醛環氧樹脂基板材料之開發與性質研究”, 中原大學碩士論文, 2008.
[59]X. Wang, W. Xing, X. Feng, B. Yu, L. Song, and Y. Hu, “Functionalization of graphene with grafted polyphosphamide for flame retardant epoxy composites: synthesis, flammability and mechanism”, Polym. Chem, vol. 5, 1145–1154, 2014.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊