|
[1] P. Ortega, I. Martin, G. Lopez, M. Colina, A. Orpella, C. Voz, and R. Alcubilla, “P-type c-Si solar cells based on rear side laser processing of Al2O3/SiCx stacks,” Solar Energy Materials & Solar Cells, vol. 106, pp. 80-83, 2012. [2] C. Xiao, D. Yang, X. Yu, X. Gu, and D. Que, “Influence of the compensation level on the performance of p-type crystalline silicon solar cells: Theoretical calculations and experimental study,” Solar Energy Materials & Solar Cells, vol. 107, pp. 263–271, 2012. [3] M. Tucci, and G. D. Cesare, “17 % efficiency heterostructure solar cell based on p-type crystalline silicon,” Journal of Non-Crystalline Solids, vol. 338-340, pp. 663-667, 2004. [4] J. Schmidt, A. G. Aberle, and R. Hezel, “Investigation of carrier lifetime instabilities in CZ grown silicon,” 26th IEE, Photovoltaic Specialists Conference (PVSC), pp. 13-18, 1997. [5] J. E. Cotter, J. H. Guo, P. J. Cousins, M. D. Abbott, F. W. Chen, and K. C. Fisher, “P-type versus n-type silicon wafers: prospects for high efficiency commercial silicon solar cells,” IEE Transactions On Electron Devices, vol. 53, no. 8, August 2006. [6] D. Macdonald, and L. J. Geerligs, “Recombination activity of interstitial iron and other transition metal point defects in p- and n-type crystalline silicon,” Applied Physics Letters, vol. 85, number 18, 1 November 2004. [7] S. Singh, N. E. Posthuma, F. Dross, J. Poortmans and R. Mertens, “Improvement in Al-alloyed emitter on rear-junction n-type mc-Si cell using a stack of pure Al and screen-printed Al paste,” 35th IEEE, Photovoltaic Specialists Conference (PVSC), pp. 003608-003610, 2010. [8] Y. SChiele, F. Book, S. Seren, G. Hahn, and B. Terheiden, “Screen-printed Al-alloyed rear junction solar cell concept applied to very thin (100 μm) large-area n-type Si wafers,” Energy Procedia, vol. 27, pp. 460-466, 2012. [9] F. Granek, and C. Reichel, “Back-contact back-junction silicon solar cells under UV illumination,” Solar Energy Materials & Solar Cells, vol. 94, pp. 1734-1740, 2012. [10] R. Woehl, J. Krause, F. Granek, and D. Biro, “Highly efficiency all-screen-printed back-contact back-junction silicon solar cells with aluminum-alloyed emitter,” Energy Procedia, vol. 8, pp. 17-22, 2011. [11] D. Thibaut, D. V. Sylvain, S. Florent, D. Djicknoum, M. Delfina, G. F. Marie, K. J. Paul, and R. P. Jean, “Development of interdigitated back contact silicon heterojunction (IBC Si-HJ) Solar Cells, Energy Procedia, vol. 8, pp. 294-300, 2011. [12] R. Stangl, J. Haschke, M. Bivour, L. Korte, M. Schmidt, K. Lips, and B. Rech, “Planar rear emitter back contact silicon heterojunction solar cells,” Solar Energy Materials & Solar Cells, vol. 93, pp. 1900-1903, 2009. [13] J. Libal, R. Petres, R. Kopecek, G. Hahn, K. Wambach, and P. Fath, “N-type multicrystalline silicon solar cells with BBr3-diffused front junction,” 31th IEEE, Photovoltaic Specialists Conference, pp. 1209-1212, 2005. [14] S. W. Yang, and Y. K. Kim, “Boron diffusion into silicon crystal with SiNx layer as reaction barrier,” Solar Energy Materials & Solar Cells, vol. 94, pp. 2187-2190, 2010. [15] Y. Komatsu, V. D. Mihailetchi, L. J. Geerligs, B. Van Dijk, J. B. Rem, and M. Harris, “Homogeneous p+ emitter diffused using boron tribromide for record 16.4 % screen-printed large area n-type mc-Si solar cell,” Solar Energy Materials & Solar Cells, vol. 93, pp. 750-752, 2009. [16] J. Jourdan, S. Dubois, R. Cabal, and Y. Veschetti, “Electricla proterties of n-type multicrystalline silicon for photovoltaic application-Impact of high temperature boron diffusion,” Materials Science and Engineering B, vol. 159-160, pp. 305-308, 2009. [17] A. M. Slade, C. B. Honsberg, and S. R. Wenham, “Impact and options for boron diffusion in buried contact solar cells,” Solar Energy Materials & Solar Cells, vol. 66, pp. 11-15, 2001. [18] F. Recart, I. Freire, L. Perez, R. Lago-Aurrekoetxea, J. C. Jimeno, and G. Bueno, “Screen printed boron emitters for solar cells,” Solar Energy Materials & Solar Cells, vol. 91, pp. 897-902, 2007. [19] T. Y. Kwon, D. H. Yang, M. K. Ju, W. W. Jung, S. Y. Kim, Y. W. Lee, D. Y. Gong, and J. Yi, “Screen printed phosphorous diffusion for low-cost and simplified industrial mono-crystalline silicon solar cells,” Solar Energy Materials & Solar Cells, vol. 95, pp. 14-17, 2011. [20] A. Mette, C. Schetter, D. Wissen, S. Lust, S. W. Glunz and G. Willeke, “Increasing the efficiency of screen-printed silicon solar cells by light-induced silver plating,” IEEE 4th World Conference, Photovoltaic Energy Conversion, vol. 1, pp. 1056-1059, 2006. [21] V. Prajapati, J. Horzel, P. Choulat, T. Janssens, J. P. and R. Mertens, “Oxidation Enhanced Diffusion for Screen Printed Silicon Solar Cells,” 38th IEEE, Photovoltaic Specialists Conference (PVSC), pp. 001089-001093, 2012. [22] E. Lee, K. Cho, Do. Oh, J. Shim, H. Lee, J. Choi, J. Kim, J. Shin, S. Lee, and H. Lee, “Exceeding 19 % efficient 6 inch screen printed crystalline silicon solar cells with selective emitter,” Renewable Energy, vol. 42, pp. 95-98, 2012. [23] H. Park, J. S. Lee, S. Kwon, S. Yoon, and D. Kim, “Effect of surface morphology on screen printed solar cells,” Current Applied Physics, vol. 10, pp. 113-118, 2010. [24] Mi. Rauer, C. Schmiga, J. Krause, R. Woehl, M. Hermle and S. W. Glunz, “Further analysis of aluminum alloying for the formation of p+ regions in silicon solar cells,” Energy Procedia, vol. 8, pp. 200-206, 2011. [25] D. L. Meier, H. P. Davis, R. A. Garcia, J. Salami, A. Rohatgi, A. Ebong, and P. Doshi, “Aluminum alloy back p-n junction dendritic web silicon solar cell,” Solar Energy Materials & Solar Cells, vol. 65, pp. 621-627, 2001. [26] D. S. Saynova, V. D. Mihailetchi, L. J. Geerligs, and A. W. Weeber, “Comparison of high efficiency solar cells on large area n-type and p-type silicon wafers with screen-printed aluminum-alloyed rear junction,” 33rd IEEE, Photovoltaic Specialists Conference (PVSC), pp. 1-5, 2008. [27] E. Urrejola, K. Peter, H. Plagwitz, and G. Schubert, “Silicon diffusion in aluminum for rear passivity solar cells,” Applied Physics Letters, vol. 98. pp. 153508, 2011. [28] C. M. Dinnis, A. K. Dahle, and J. A. Taylor, “Three-dimensional analysis of eutectic grains in hypoeutectic Al-Si alloys,” Materials Science and Engineering A, vol. 392, pp. 440-448, 2005. [29] A. Sugianto, L. Mai, M. B. Edwards, Bu. S. Tjahjono, and S. R. Wenham, “Investigation of Al-Doped Emitter on N-Type Rear Junction Solar Cells,” IEEE Transaction on Electron Devices, vol. 57, no. 2, February 2010. [30] Z. Du, N. Palina, J. Chen, M. Hong, and B. Hoex, “Rear-side contact opening by laser ablation for industrial screen-printed aluminum local back surface field silicon wafer solar cells,” Energy Procedia, vol. 25, pp. 19-27, 2012. [31] D. Y. Lee, H. H. Lee, J. Y. Ahn, H. J. Park, J. H. Kim, H. J. Kwon, and J. W. Jeong, “A new back surface passivation stack for thin crystalline silicon solar cells with screen-printed back contacts,” Solar Energy Materials & Solar Cells, vol. 95, pp. 26-29, 2011. [32] R. Chaoui, and A. Messaoud, “Screen-printed solar cells with simultaneous formation of porous silicon selective emitter and antireflection coating,” Desalination, vol. 209, pp. 118-121, 2007. [33] M. Ju, Y. J. Lee, J. Lee, B. Kim, K. Ryu, K. Choi, K. Song, K. Lee, C. Han, Y. Jo, and J. Yi, “Double screen-printed metallization of crystalline silicon solar cells as low as 30 μm metal line width for mass production,” Solar Energy Materials & Solar Cells, vol. 100, pp. 204-208, 2012. [34] A. Edler, V. Mihailetchi, R. Kopecek, R. Harney, T. Boscke, D. Stichtenoth, J. Lossen, K. Meyer, R. Hellriegel, T. Aichele, and H. J. Krokoszinski, “Improving screen printed metallization for large area industrial solar cells based on n-type material,” Energy Procedia, vol. 8, pp. 493-497, 2011. [35] C. H. Lin, S. Y. Tsai, S. P. Hsu, and M. H. Hsieh, “Structural properties of the solidified-Al/regrown-Si structures of printed Al contacts on crystalline Si solar cells,” Solar Energy Materials & Solar Cells, vol. 92, pp. 986-991, 2008. [36] B. Thaidigsmann, C. Kick, A. Drews, F. Clement, A. Wolf, and D. Biro, “Fire-through contacts – a new approach to contact the rear side of passivity silicon solar cells,” Solar Energy Materials & Solar Cells, vol. 108, pp. 164-169, 2013. [37] J. Schmidt, N. Thiemann, R. Bock, and R. Brendel, “Recombination lifetimes in highly aluminum-doped silicon,” Journal of Applied Physics, vol. 106, pp. 093707, 2009. [38] R. Woehl, P. Gundel, J. Krause, K. Ruhle, F. D. Heinz, M. Rauer, C. Schmiga, M. C. Schubert, W. Warta, and Daniel Biro, “Evaluating the aluminum-alloyed p+-layer of silicon solar cells by emitter saturation current density and optical microspectroscopy measurements,” IEEE Transactions on Electron Devices, vol. 58, no. 2, February 2011. [39] S. Singh, F. Dross, N. E. Posthuma, and R. Mertens, “Lare area 15.8 % n-type mc-Si screen-printed solar cell with screen printed Al-alloyed emitter,” Solar Energy Materials & Solar Cells, vol 95, pp. 1151-1156, 2011. [40] J. Krause, R. Woehl, M. Rauer, C. Schmiga, J. Wilde, and D. Biro, “Microstructural and electrical properties of different-sized aluminum-alloyed contacts and their layer system on silicon surfaces,” Solar Energy Materials & Solar Cells, vol. 95, pp. 2151-2160, 2011. [41] S. Narasimha and A. Rohatgi, “Optimized aluminum back surface field techniques for silicon solar cells,” 26th IEEE, Photovoltaic Specialists Conference (PVSC), pp. 63-66, 1997. [42] C. Gong, K. V. Nieuwenhuysen, N. E. Posthuma, E. V. Kerschaver, and J. Poortmans, “Another approach to form p+ emitter for rear junction n-type solar cells: Above 17.0 % efficiency cells with CVD boron-doped epitaxial emitter,” Solar Energy Materials & Solar Cells, vol. 95, pp. 11-13, 2011. [43] K. Ryu, A. Upadhyaya, Y. W. Ok, H. Xu, L. Metin, and Ajeet Rohatgi, “High efficiency n-type solar cells with screen-printed boron emitters and ion-implanted back surface field,” 38th IEEE, Photovoltaic Specialists Conference (PVSC), pp. 002247-002249, 2012. [44] R. Bock, S. Mau, J. Schmidt, and R. Brendel, “Back-junction back-contact n-type silicon solar cells with screen-printed aluminum-alloyed emitter,” Applied Physics Letters, vol. 96, pp. 263507, 2010. [45] C. Reichel, F. Granek, M. Hermle, and S. W. Glunz, “Investigation of electrical shading effects in back-contacted back-junction silicon solar cells using the two-dimensional charge collection probability and the reciprocity theorem,” Journal Of Applied Physics, vol. 109, pp. 024507, 2011. [46] T. Desrues, S. D. Vecchi, F. Souche, D. Munoz and P. J. Ribeyron “SLASH concept: A novel approach for simplified interdigitated back contact solar cells fabrication,” 38th IEEE, Photovoltaic Specialists Conference (PVSC), pp. 001602-001605, 2012.
|