|
[1] W. Gulbinat, What is the role of WHO as an intergovernmental organisation, https://www.hon.ch/en/, 1997. [2] G. A. Cuckler, A. M. Sisko, J. A. Poisal, S. P. Keehan, S. D. Smith, A. J. Madison, C. J. Wolfe, J. C. Hardesty, National Health Expenditure Projections, 2017-26: Despite Uncertainty, Fundamentals Primarily Drive Spending Growth, Health Aff., 37 (2018) 482-492. [3] Irie, Miyake, Capabilities of three-layered perceptrons, IEEE 1988 International Conference on Neural Networks, 1988, pp. 641-648 vol.641. [4] N. A. Mat Isa, W. M. F. W. Mamat, Clustered-Hybrid Multilayer Perceptron network for pattern recognition application, Applied Soft Computing, 11 (2011) 1457-1466. [5] C. J. Lin, C. H. Chen, C. Y. Lee, A self-adaptive quantum radial basis function network for classification applications, 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No.04CH37541), 2004, pp. 3263-3268 vol.3264. [6] B. Malakooti, Y. Zhou, Approximating polynomial functions by Feedforward Artificial Neural Networks: Capacity analysis and design, Appl. Math. Comput., 90 (1998) 27-51. [7] K. Hornik, M. Stinchcombe, H. White, Multilayer feedforward networks are universal approximators, Neural Networks, 2 (1989) 359-366. [8] H. Adeli, S. L. Hung, An adaptive conjugate gradient learning algorithm for efficient training of neural networks, Appl. Math. Comput., 62 (1994) 81-102. [9] N. Zhang, An online gradient method with momentum for two-layer feedforward neural networks, Appl. Math. Comput., 212 (2009) 488-498. [10] M. T. Hagan, M. B. Menhaj, Training feedforward networks with the Marquardt algorithm, IEEE Transactions on Neural Networks, 5 (1994) 989-993. [11] J. R. Zhang, J. Zhang, T. M. Lok, M. R. Lyu, A hybrid particle swarm optimization–back-propagation algorithm for feedforward neural network training, Appl. Math. Comput., 185 (2007) 1026-1037. [12] M. Gori, A. Tesi, On the problem of local minima in backpropagation, IEEE Transactions on Pattern Analysis and Machine Intelligence, 14 (1992) 76-86. [13] V. K. Bohat, K. V. Arya, An effective gbest-guided gravitational search algorithm for real-parameter optimization and its application in training of feedforward neural networks, Knowledge-Based Systems, 143 (2018) 192-207. [14] S. Mirjalili, S. Z. Mohd Hashim, H. Moradian Sardroudi, Training feedforward neural networks using hybrid particle swarm optimization and gravitational search algorithm, Appl. Math. Comput., 218 (2012) 11125-11137. [15] D. J. Armaghani, E. T. Mohamad, M. S. Narayanasamy, N. Narita, S. Yagiz, Development of hybrid intelligent models for predicting TBM penetration rate in hard rock condition, Tunnelling and Underground Space Technology, 63 (2017) 29-43. [16] J. L. Salmeron, S. A. Rahimi, A. M. Navali, A. Sadeghpour, Medical diagnosis of Rheumatoid Arthritis using data driven PSO–FCM with scarce datasets, Neurocomputing, 232 (2017) 104-112. [17] H. Melo, J. Watada, Gaussian-PSO with fuzzy reasoning based on structural learning for training a Neural Network, Neurocomputing, 172 (2016) 405-412. [18] B. González, F. Valdez, P. Melin, G. Prado-Arechiga, Fuzzy logic in the gravitational search algorithm for the optimization of modular neural networks in pattern recognition, Expert Syst. Appl., 42 (2015) 5839-5847. [19] F. Olivas, F. Valdez, P. Melin, A. Sombra, O. Castillo, Interval type-2 fuzzy logic for dynamic parameter adaptation in a modified gravitational search algorithm, Inf. Sci., 476 (2019) 159-175. [20] F. Valdez, J. C. Vazquez, P. Melin, O. Castillo, Comparative study of the use of fuzzy logic in improving particle swarm optimization variants for mathematical functions using co-evolution, Applied Soft Computing, 52 (2017) 1070-1083. [21] S. J. Russell, P. Norvig, Artificial intelligence: a modern approach, Malaysia; Pearson Education Limited2016. [22] J. Kennedy, R. Eberhart, Particle swarm optimization, Proceedings of ICNN'95 - International Conference on Neural Networks, 1995, pp. 1942-1948 vol.1944. [23] Z. Zhan, J. Zhang, Y. Li, H. S. Chung, Adaptive Particle Swarm Optimization, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 39 (2009) 1362-1381. [24] S. Gambhir, S. K. Malik, Y. Kumar, PSO-ANN based diagnostic model for the early detection of dengue disease, New Horizons in Translational Medicine, 4 (2017) 1-8. [25] J. Cervantes, F. Garcia-Lamont, L. Rodriguez, A. López, J. R. Castilla, A. Trueba, PSO-based method for SVM classification on skewed data sets, Neurocomputing, 228 (2017) 187-197. [26] A. Subasi, Classification of EMG signals using PSO optimized SVM for diagnosis of neuromuscular disorders, Comput Biol Med, 43 (2013) 576-586. [27] E. Rashedi, H. Nezamabadi-pour, S. Saryazdi, GSA: A Gravitational Search Algorithm, Inf. Sci., 179 (2009) 2232-2248. [28] M. A. Behrang, E. Assareh, M. Ghalambaz, M. R. Assari, A. R. Noghrehabadi, Forecasting future oil demand in Iran using GSA (Gravitational Search Algorithm), Energy, 36 (2011) 5649-5654. [29] Y. Jamshidi, V. G. Kaburlasos, gsaINknn: A GSA optimized, lattice computing knn classifier, Engineering Applications of Artificial Intelligence, 35 (2014) 277-285. [30] L. A. Zadeh, Fuzzy sets, Information and Control, 8 (1965) 338-353. [31] C. M. Bishop, Neural networks for pattern recognition, Oxford university press1995. [32] S. Sinaie, Solving shortest path problem using gravitational search algorithm and neural networks, (2010). [33] L. J. Rubini, P. Eswaran, Generating comparative analysis of early stage prediction of Chronic Kidney Disease, International Journal of Modern Engineering Research (IJMER), 5 (2015) 49-55. [34] K. Murat, T. Kemal, Classification of chronic kidney disease with most known data mining methods, International Journal of Advances in Science Engineering and Technology, 5 (2017). [35] S. B. Akben, Early Stage Chronic Kidney Disease Diagnosis by Applying Data Mining Methods to Urinalysis, Blood Analysis and Disease History, IRBM, 39 (2018) 353-358. [36] O. Er, A. C. Tanrikulu, A. Abakay, F. Temurtas, An approach based on probabilistic neural network for diagnosis of Mesothelioma’s disease, Computers & Electrical Engineering, 38 (2012) 75-81. [37] M. Nilashi, O. bin Ibrahim, H. Ahmadi, L. Shahmoradi, An analytical method for diseases prediction using machine learning techniques, Computers & Chemical Engineering, 106 (2017) 212-223. [38] S. Mukherjee, Malignant Mesothelioma Disease Diagnosis using Data Mining Techniques, Applied Artificial Intelligence, 32 (2018) 293-308.
|