跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.1) 您好!臺灣時間:2025/11/29 05:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張國緯
研究生(外文):Chang, Kuo-Wei
論文名稱:應用BoussinesqEquations在一維波浪場上之數值計算
論文名稱(外文):Numerical Calculations of One-Dimensional Wave Fields Using Boussinesq Equations
指導教授:林銘崇林銘崇引用關係丁肇隆丁肇隆引用關係
指導教授(外文):Lin, Ming-ChungDing, Chao-Lung
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:造船及海洋工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:90
語文別:中文
論文頁數:61
中文關鍵詞:數值模式波浪傳遞非線性Boussinesq Equations波浪分散性
外文關鍵詞:Numerical modelsWave transformationNonlinearityBoussinesq Equationswave dispersion
相關次數:
  • 被引用被引用:1
  • 點閱點閱:204
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
本研究旨在探討Boussinesq equations,並發展一套數值模式,期能預測分析波浪傳遞之現象。文中以[2,2] Padé approximation推導以任意水深位置形式表示之Boussinesq equations,並比較以不同水深位置速度為變數時,其分散關係式、群波速及淺化梯度,並由其結果可知,控制相位速度誤差在5﹪的條件下時,其相對水深限制 可延伸到0.5。數值計算方法利用Fourth-order Adams-Bashforth-Moulton predictor-corrector scheme以及消波邊界條件求解Boussinesq equations,以增加數值計算之穩定性。最後並將數值計算結果與實驗數據及理論解,作一比較分析,以為本數值模式之驗證。
The purpose of this research is to develop a numerical model based on Boussinesq equations that can predict the wave transformation. By [2,2] Padé approximation, different velocity parameter Boussinesq equations are derived. The effects of different Boussinesq type equations on linear dispersion relations, group velocity and shoaling gradients were discussed. The limitation of on the applications of Boussinesq equations can be extended to 0.5 under suitable choice of the velocity parameter with the requirement of the difference of the phase velocities from calculation and from linear dispersion relation less than 5﹪. The fourth-order Adams-Bashforth-Moulton predictor-corrector scheme with proper absorbing boundary conditions was imposed as the basic numerical scheme. Finally, numerical results were verified with past experimental and theoretical results.
中文摘要Ⅰ
英文摘要Ⅱ
目錄Ⅲ
圖目錄Ⅴ
表目錄Ⅶ
符號說明Ⅷ
第一章緒論1
1-1 概述1
1-2 相關文獻回顧5
1-3 研究內容8
第二章理論分析10
2-1 控制方程式及邊界條件10
2-1-1 無因次化方程式及其邊界條件12
2-1-2 波浪勢流函數之垂直分佈函數13
2-1-3 微擾法15
2-2 分散關係式及淺化特性20
2-2-1 分散關係式21
2-2-2 群波速24
2-2-3 淺化梯度27
第三章數值方法29
3-1 基本方程式有限差分化30
3-1-1 基本方程式30
3-1-2 時間之離散式32
3-1-3 空間之離散式35
3-2 邊界條件37
3-2-1 入射波邊界條件38
3-2-2 完全反射邊界條件38
3-2-3 消波邊界條件39
3-3 穩定條件40
第四章模式驗證42
4-1 一維波浪傳遞數值模擬42
4-1-1 消波邊界條件測試42
4-1-2 孤立波43
4-1-3 波浪傳遞現象與相對水深限制47
4-1-4 潛堤測試51
4-2 二維波浪傳遞數值模擬54
第五章結論與建議56
參考文獻58
圖 目 錄
圖2-1空間座標示意圖10
圖2-2不同速度變數 與線性波理論之分散關係式曲線比較圖23
圖2-3不同速度變數 與線性波理論之相位速度誤差比較圖23
圖2-4不同速度變數 與線性波理論之群波速比較圖25
圖2-5不同速度變數 與線性波理論之群波速誤差比較圖26
圖2-6不同速度變數 淺化係數梯度與線性波之比較圖28
圖3-1座標格點位置圖37
圖3-2一為正向消波邊界條件示意圖41
圖4-1消波邊界處水面波形變化圖43
圖4-2孤立波( )數值解與理論解在不同計算時間時的空間位置比較圖45
圖4-3不同波高之孤立波波形比較圖46
圖4-4Conventional Boussinesq equations計算時間 時的波形剖面圖48
圖4-5Extended Boussinesq equations計算時間 時的波形剖面圖48
圖4-7Conventional Boussinesq equations在 的位置歷時波形變化比較圖50
圖4-8Extended Boussinesq equations在 的位置歷時波形變化比較圖50
圖4-9實驗潛堤配置圖51
圖4-10Case(2)波浪通過潛堤P3及P5位置之歷時波形變化圖53
圖4-11Case(4)波浪通過潛堤P3及P5位置之歷時波形變化圖53
圖4-12Case(6)波浪通過潛堤P3及P5位置之歷時波形變化圖53
圖4-13Ring test歷時波形變化圖55
表 目 錄
表1-1 波場模式之適用範圍表4
表4-1 潛堤實驗入射波浪條件表52
1.Agnon, Y., Madsen, P.A. and Schäffer, H.A., 1999, " A new approach to high-order Boussinesq models, " J. Fluid Mech., vol.399, pp.319-333.
2.Battjes, J.A. and Janssen, J.P.F.M., 1978, " Energy loss and set-up due to breaking in random wave, " Proc. 16th Int. Conf. Coastal Eng., pp.560-587.
3.Beji, S. and Nadaoka, K., 1995, " A formal derivation and numerical modeling of the improved Boussinesq equations for verying depth, " Ocean Eng., vol.23, pp.691-704.
4.Berkhoff, J.C.W., 1972, " Computation of combined refraction-diffraction, " Proc. 13th Int. Conf. Coastal Eng., pp.471-490.
5.Booij, N., 1981, " Gravity waves on water with non-uniform depth and current, " Rep. No. 81-1, Dept. of Civil Eng. Delf Univ. of Tech., Netherlands.
6.Brøker, H.I., Deigaard, R. and Fredsoe, J., 1991, " Onshore/Offshore sediment transport and morphological modelling of coastal profiles, " Proc. Specialty Conf. Coastal Sediments ''91, Settle WA.
7.Boussinesq, J., 1872, " Theorie des ondes et remous qui se propagent le long d,un canal rectangularire horizontal, en communiquant au liquide contenu dansce canal des vitesses sensiblement pareilles de la surface au, " J. Math. Pure et Appl., 2nd Series, Vol.17, pp.55-108.
8.Dean, R.G. and Dalrymple, R.A., 1984, " Water Wave Mechanics for Engineering and Scientists, " Prentice-Hall.
9.Engquist, B. and Majda, A., 1977, " Absorbing boundary conditions for the numerical simulation of waves, " Math. Comp. Vol.31, pp.629-651.
10.Gobbi, M.F. and Kirby, J.T., 1996, " A forth order Boussinesq-type wave model, " Proc. 25th Int. Conf. on Coastal Eng., pp.1116-1129.
11.Gobbi, M.F. and Kirby, J.T., 1999, " Wave evolution over submerged sills: tests of a high-order Boussinesq model, " Proc. 25th Int. Conf. on Coastal Eng., pp.1116-1129.
12.Horikawa K., 1988, " Nearshore Dynamics and Coastal Processes, " University of Tokyo Press.
13.Isobe, M., 1994, " Time-depedent mild-slop equation for random waves, " Proc. 24th Int. Conf. On Coastal Eng., pp.285-299.
14.Kirby J.T., 1984, " A note on linear surface wave-current interaction over slowly varying topography, " J. of Geophys. Res., Vol.89, pp.745-747.
15.Lin, C. C. and Clark A., 1959, " On the theory of shallow water waves, " Tsing Hua J. of Chinese Studies, Special 1, pp.54-62.
16.Madsen, P.A., R. Murray and O.R. Sørensen, 1991, " A new form of Boussinesq equations with improved linear dispersion Characteristics, " Coastal Eng. 15, pp.371-388.
17.Madsen, P.A. and O.R. Sørensen, 1992, " A new form of Boussinesq equations with improved linear dispersion Characteristics Part2. A slowly-varying bathymetry, " Coastal Eng. 18, pp.183-204.
18.Madsen, P.A., Banijamali, B., Schäffer, H.A. and Sørensen, O.R., 1996, " Boussinesq type equations with high accuracy in dispersion and nonlinearity, " Proc. 25th Int. Conf. on Coastal Eng., pp.95-108.
19.McCowan, A.D., 1985, " Equation systems for modeling dispersive flow in shallow water, " Proc. 21st IAHR Congress, Melbourne, pp.51-57.
20.McCowan, A.D., 1987, " The range of application of Boussinesq type numerical short wave models, " Proc. 22nd IAHR Congress, Laussane, pp.378-384.
21.Mei, C.C., 1983, " The applied dynamics of ocean surface wave, " John Wiley & Sons.
22.Nwogu, O., 1993, " Alternative form of Boussinesq equations for nearshore wave propagation, " J. of Waterway, Port, Coastal and Ocean Engineering, ASCE, 119(6), pp.618-638.
23.Ohnaka, S. and Watanabe, A., 1990, " Modeling of wave-current interaction and beach change, " Proc. 22nd Int. Conf. Coastal Eng., pp.2443-2456.
24.Ohyama, T., Kiota, W., and Tada, A., 1994, " Applicability of numerical models to nonlinear dispersive waves, " Coastal Eng. 24, pp.213-297.
25.Orszag, S. A., 1980, " Approximation of radiation boundary conditions, " J. of Computational Physics, pp.115-135.
26.Peregrine, D.H., 1967, " Long wave on a beach, " J. Fluid Mech., vol.27, pp.815-827.
27.Radder, A.C., 1979, " On the parabolic equation method for water wave propagation, " J. Fluid Mech., Vol.95, No.1, pp.159-176.
28.Schäffer, H.A. and Madsen, P.A., 1995, " Further enhancements of Boussinesq-type equations, " Coastal Eng. 26, pp.1-14.
29.Southgate, H.N. and Nairm, R.B., 1993, " Deterministic profile modelling of nearshore processes Part 1 Wave and Current, " Coastal Eng. 19, pp.27-56.
30.Watanabe, A. and Dibajnia, M., 1987, " 波浪場と海濱斷面地形變化の數值計算モデル, " 第34回海岸工學演講會論文集, pp.291-295.
31.Wei, G., J.T. Kirby, S.T. Grilli and R. Subramanya, 1995, " Time-dependent numerical code for extended Boussinesq equations, " J. Fluid Mech., Vol294, pp.71-92.
32.Wei, G., J.T. Kirby, S.T. Grilli and R. Subramanya, 1995, " A fully nonlinear Boussinesq model for surface waves, Part 1. Highly nonlinear unsteady waves, " J. Fluid Mech., Vol294, pp.71-92.
33.Wei, G., J.T. Kirby, Gobbi, M.F., 2000, " A fully nonlinear Boussinesq model for surface waves, Part 2. Extended to , " J. Fluid Mech., Vol294, pp.71-92.
34.Witting, J.M., 1984, " A unified model for the evolution of nonlinear water waves, " J. of Computational Physics. 56, pp.203-236.
35.Zheng Peixi, 1999, " A high-order numerical model for waves and currents based on Boussinesq equations, " Ph. D. dissertation of the University of Tokyo, Japan.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top