跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.172) 您好!臺灣時間:2025/09/10 05:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃偉婷
研究生(外文):Wei-Ting Huang
論文名稱:草蝦抗微生物肽之基因表現與抑微生物作用
論文名稱(外文):Gene Expression and Pathogen Inhibitory Effect of Antimicrobial Peptide (Monodoncin) fromGene Expression and Pathogen Inhibitory Effect of Antimicrobial Peptide (Monodoncin) from Black Tiger Shrimp (Penaeus monodon))
指導教授:吳金洌吳金洌引用關係
指導教授(外文):Jen-Leih Wu
學位類別:碩士
校院名稱:國立海洋大學
系所名稱:生物科技研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:110
中文關鍵詞:抗微生物肽草蝦
外文關鍵詞:antimicrobial peptidesAMPsBlack Tiger ShrimpPenaeus monodonMonondoncin
相關次數:
  • 被引用被引用:4
  • 點閱點閱:389
  • 評分評分:
  • 下載下載:80
  • 收藏至我的研究室書目清單書目收藏:1
抗微生物肽是一種小的陽離子分子,在生物界包括植物、脊椎動物與無脊椎動物都扮演著與生俱來的防禦機能,可用以抵抗細菌、黴菌、原蟲、寄生蟲和病毒之感染。
由草蝦血淋巴球中分離出來的草蝦抗微生物肽(Monodoncin)具有55個胺基酸,分子量約為5.8-KDa,由富含脯胺酸(proline)的N端及6個半胱胺酸(cysteine)的C端所組成,已證明對格蘭氏陰性菌具有抑制效果。本實驗進一步選殖草蝦抗微生物肽之基因體(genomic DNA)序列,全長為1338個核苷酸,共包含兩個外顯子(exon),及一個676個核苷酸的插入子(intron)。在抑菌方面,發現其對格蘭氏陽性菌Aeroccus viridan及黴菌Fusarium pisi、Fusarium oxysporum亦具有抑(殺)菌效果。以掃描式電子顯微鏡觀察經草蝦抗微生物肽處理的大腸桿菌,發現草蝦抗微生物肽可與大腸桿菌作用,且經由破壞細胞膜進而達到殺死大腸桿菌的功效。草蝦抗微生物肽自蝦苗早期的無節幼蟲第三期(Nauplius III)就已經有表現,並隨著成長而持續。草蝦抗微生物肽主要表現分布的組織為血淋巴球,以組織免疫染色發現蝦殼中亦富含草蝦抗微生物肽。經格蘭氏陰性菌-溶藻弧菌Vibrio alginolyticus及格蘭氏陽性菌Aeroccus viridan感染草蝦後,草蝦抗微生物肽RNA的表現在血淋巴球、中腸腺、鰓於12小時達到最高量,並可降低草蝦體內的菌量於24小時達到最低。此外,有一4-KDa的蛋白質隨病原菌感染而變化,推測為草蝦抗微生物肽的衍生物(processing form)。在應用的部份,將化學合成的草蝦抗微生物肽和蠶抗微生物肽(Cecropin B)注射至帶有白點病毒的草蝦,可延緩草蝦因為緊迫或病毒感染所造成的死亡。
Abstract:
Antimicrobial peptides(AMPs)are small cationic molecules that play an important role in innate host defense mechanism of living organisms including plants, vertebrates and invertebrates against invading microorganisms such as bacteria, fungi, parasites and virus.
Monodoncin is a member of AMPs isolated from the haemocyte of black tiger shrimp, Penaeus monodon, a mature peptide with 55 residues and 5.8-kDa MW. It contains with a proline-rich amino-terminal domain and a carboxyl-domain containing six cysteines. It has an inhibitory effect on gram negative bacteria. In the present study the genomic DNA contains 1338 bp including two exon and one intron with 676 bp. Monodoncin has inhibitory effect on Gram+ Aeroccus viridan and fungi Fusarium pisi、Fusarium oxysporum. The electron microscopic study demonstrates the interaction and disruption of the cell membrane causing the killing of the pathogens. Monodoncin gene is expressed during early larval stages, starting from Nauplius III and continues throughout the development. It is mainly expressed in haemocytes and highly detected on carapace by immunohistochemistry . Twelve hours after Gram-negative. bacteria Vibrio alginolyticus and Gram-positive bacteria Aeroccus viridan challenge, the Monodoncin gene expression of RNA level reaches to the highest in haemocytes, intestine and gill, coincident with the residue bacteria count decreasing to the lowest level at 24 hours post-challenge in the treated shrimp. In addition, there is a change in the expression of a 4-KDa peptide suggested to be a processing form of Monodoncin. Furthermore, injection of synthesized Monodocin and Cecropin B(Hyalophora cecropia)to white spot virus infected-tiger shrimp delay the death progression due to transport stress and virus infection.
致謝
目錄
中文摘要..........................................Ⅰ
英文摘要..........................................Ⅲ
壹、前言...........................................1
一、草蝦之介紹及養殖現況.............................1
二、蝦類(甲殼類)疾病之簡介..........................3
三、無脊椎動物(甲殼類)的免疫及防禦系統...............4
四、抗微生物肽的介紹與分類..........................7
五、抗微生物生物肽的作用機制........................11
(一)胜肽-脂質膜相互作用.............................11
(二)間接由受體傳達辨識過程...........................12
六、蝦類抗微生物肽的研究............................13
七、實驗目的與方向...................................15
貳、實驗材料........................................17
一、生物材料........................................17
二、反應試劑........................................18
三、儀器與器材........................................28
參、實驗方法..........................................30
一、草蝦抗微生物肽(Monodoncin)之基因(cDNA)序列選殖...................................................30
二、草蝦抗微生物肽(Monodoncin)之基因體
(genomic DNA)序列選殖.............................36
三、細菌及黴菌對化學合成抗微生物肽和抗生素
(Tetracycline)之體外敏感性試驗(in vitro assay)....38
四、以掃描式電子顯微鏡觀察經草蝦抗微生物肽
(Monodoncin)處理之大腸桿菌(E. coli)..............39
五、半定量反轉錄酶-聚合酶連鎖反應(Semi- Quntitative
RT-PCR)及南方點墨法(Southern Blotting)分析草蝦抗微
生物肽(Monodoncin)於蝦苗時期RNA的表現.............40
六、探討草蝦抗微生物肽(Monodoncin)在各組織間的表現....44
七、探討草蝦經病原菌感染後草蝦體內菌量與抗微生物肽在組
織間的表現.........................................49
八、觀察施打抗微生物肽對帶原白點病毒之草蝦死亡情形的影響..52
肆、實驗結果.. ....................... 53
一、草蝦抗微生物肽(Monodoncin)基因(cDNA)序列.. .....53
二、草蝦抗微生物肽(Monodoncin)基因體(genomic DNA)
序列..............................................53
三、細菌及黴菌對化學合成抗微生物肽和抗生素
(Tetracycline)之體外敏感性試驗(in vitro assay)....54
四、以掃描式電子顯微鏡觀察草蝦抗微生物肽(Monodoncin)
對大腸桿菌(E. coli)的影響.........................55
五、草蝦抗微生物肽(Monodoncin)RNA於蝦苗時期的表現.....55
六、草蝦抗微生物肽(Monodoncin)在各組織間之表現模式.....56
七、草蝦經病原菌感染後草蝦體內菌量與抗微生物肽在組織間
的表現模式..........................................57
八、施打抗微生物肽至帶原白點病毒之草蝦對其死亡情形的影響...62
伍、討論...............................................63
陸、參考文獻...........................................71
柒、圖表...............................................84
捌、附錄 .............................................110
六、參考文獻
郭光雄、宋延齡、陳秀男、廖一久、游祥平、謝大文、鍾忠勇、羅竹芳。 (1992) 。蝦。黎明文化事業股份有限公司。台北。
邱子庭。(2001)。分子選殖與草蝦抗微生物肽特性之研究。國立台灣海洋大學水產養殖學系碩士論文。 基隆。
Adams, A. (1991) Response of penaeid shrimp to exposure to Vibrio species. Fish Shellfish Immunol. 1, 59-70.
Agerberth, B., Gunne, H., Odeberg, J., Kogner, P., Boman, H.G., and Gudmundsson, G.H. (1995) FALL-39, a putative human peptide antibiotic, is cysteine-free and expressed in bone marrow and testis. Proc Natl Acad Sci USA. 92, 195-199.
Agerbert, B., Lee, J. Y., Bergman, T., Carlqooist, M., Boman, H.G., Mutt, V., and Jomvall, H. (1991) Amino acid sequence of PR-39. Isolation from pig intestine of a new member of the family of proline-arginine-rich antibacterial peptides. Eur. J. Biochem. 202, 849-854.
Andreu, D., and Rivas, L. (1998) Animal antimicrobial peptides: an overview. Biopolymers. 47, 415-433.
Anderson, I.G., and Prior, H.C. (1992) Baculovirus infections in the mud crab, Scylla serrata, and a freshwater crayfish, Cherax quadricarinatus, from Australia. J. Invert. Pathol. 60, 265-273.
Bachere, E., Destoumieux,D., and Bulet,P. (2000) Penaeidins, antimicrobial peptides of shrimp : a comparison with other effectors of innate immunity. Aquaculture. 191, 71-88.
Bachere, E., Mialhe, E., and Rodriguez, J. (1995) Identification of defence effectors in the haemolymph of Crustaceans with particular reference to the shrimp, Penaeus japonicus Bate: prospects and applications. Fish Shellfish Immunol. 5, 597-612.
Bartlett, T.C., Cuthbertson, B.J., Shepard, E.F., Chapman, R.W., Gross, P.S., and Warr, G.W. (2002) Crustins, homologues of an 11.5-kDa antibacterial peptide, from two species of penaeid shrimp, Litopenaeus vannamei and Litopenaeus setiferus. Marine Biotechnology. 4, 278-293.
Beck, G. and Habicht, G.S. (1996) Immunity and the invertebrates.Sci Am. 275(5), 60-63, 66.
Bonmatin, J.M., Bonnat, J.L., Gallet, X., Vovelle, F., Ptak, M., Reichhart, J.M., Hoffmann, J.A., Keppi, E., Legrain, M., and Achstetter, T. (1992) Two-dimensional 1H NMR study of recombinant insect defensin A in water: resonance assignments, secondary structure and global folding. J Biomol NMR. 2(3), 235-256.
Bulet, P., Hetru, C., Dimarcq, J. L., and Hoffmann, D. (1999) Antimicrobial peptides in insects; structure and function. Dev Comp Immun. 23, 329-344.
Burns, C.D., Berrigan, M.E., and Henderson, G.E. (1979) Fusarium sp. Infections in the freshwater prawn, Macrobrachium rosenbergii. Aquaculture. 16, 193-198.
Casteels, P. (1998) Immune response in Hymenoptera.In: Brey PT, Hultmark D, editors. Molecular mechanisms of immune responses in insects. Chapman & Hall. 111-134.
Chinain, M., and Vey, A. (1988) Experimental study of Fusarium solani: infections in Astacus leptodactylus and Pacifastacus leniusculus (Crustacea, Decapoda). Dis Aquat Org. 5, 215-223.
Chisholm, J.R.S., and Smith, V.J. (1995) Comparison of antibacterial activity in the hemocytes of different crustacean species. Comp Biochem Physiol A. 110, 39-45.
Charlet, M., Chernysh, S., Philippe, H., Hetru, C., Hoffmann, J.A., and Bulet, P. (1996) Innate immunity. Isolation of several cysteine-rich antimicrobial peptides from the blood of a mollusc, Mytilus edulis. J Biol Chem 271, 21808-23813.
Chung, C.T., and Miller, R.H. (1988) A rapid and convenient method for the preparation and storage of competent bacterial cells. Nucleic Acids Res 16, 3580.
Cociancich, S., Ghazi, A., Hetru, C., Hoffmann, J.A., and Letellier, L. (1993) Insect defensin, an inducible antibacterial peptide, forms voltage-dependent channels in Micrococcus luteus. J Biol Chem. Sep 15; 268(26), 19239- 19245.
Cowland, J.B., Johnsen, A. H., and Borregarrd, N. (1995) hCAP-18, a cathelin/ pro-bactenecin-like protein of human nutrophil specific granules. FEBS Lett. 368, 173-176.
Crisp, L.M., and Bland, C.E. (1989) Biosystematics and distribution of Lagenidium callinectes, a fungal pathogen of marine crustacea. Mycologia. 81, 709-716.
Cuthbertson, B.J., Shepard, E.F., Chapman, R.W., and Gross, P.S. (2002) Diversity of the penaeidin antimicrobial peptides in two shrimp species. Immunogenetics. 54, 442-445.
Destoumieux, D., Bulet, P., Loew, D., Van Dorsselaer, A., Rodriguez, J., and Bachere, E. (1997) Penaeidins, a new family of antimicrobial peptides isolated from the shrimp Penaeus vannamei (Decapoda). J Biol Chem. 272, 28398-28406.
Destoumieux, D., Bulet, P., Strub, J.M., Van Dorsselaer, A., and Bachere, E. (1999) Recombinant expression and range of activity of penaeidins, antimicrobial peptides from penaeid shrimp. Eur J Biochem. 266, 335-346.
Destoumieux, D., Munoz, M., Bulet, P., and Bachere, E. (2000) Penaeidins, a family of antimicrobial peptides from penaeid shrimp (Crustacea, Decapoda). Cell Mol Life Sci. 57, 1260-1271.
Destoumieux, D., Munoz, M., Cosseau, C., Rodriguez, J., Bulet, P., Comps, M., and Bachere, E. (2000) Penaeidins, antimicrobial peptides with chitin- binding activity, are produced and stored in shrimp granulocytes and released after microbial challenge. J Cell Sci. 113 ( Pt 3), 461-469.
Dickinson, L., Russell, V., and Dunn, P.E. (1988) A family of bacteria- regulated, cecropin D-like peptides from Manduca sexta. J Biol Chem. 263, 19424-19429.
Duclohier, H., Molle, G., and Spach, G. (1989) Antimicrobial peptide magainin I from Xenopus skin forms anion-permeable channels in planar lipid bilayers. Biophys J. Nov; 56(5), 1017-1021.
Duliat, M. (1985) Clotting processes in crustacean decapoda. Biol Rev, 60, 473-498.
Ehrenstein, G., Lecar, H. (1977) Electrically gated ionic channels in lipid bilayers. Q Rev Biophys. 10, 1-34.
Evans, E.E., Painter, B., Evans, M.L., Weinherimer, P., and Acton, R.Y. (1968) An induced bactericidin in the spiny lobster Panulirus argus. Proc Soc Exp Biol Med. 128, 394-398.
Falla, T.J., Karunaratne, D.N., and Hancock, R.E. (1996) Mode of action of the antimicrobial peptide indolicidin. J Biol Chem. Aug 9;271(32), 19298-19303.
Fehlbaum, P., Bulet, P., Michaut, L., Lagueux, M., Broekaert, WF., Hetru, C., and Hoffmann, JA. (1994) Insect immunity, septic injury of Drosophila induces the synthesis of a potent antifungal peptide with sequence homology to plant anti- fungal peptides. J Biol Chem. 269, 33159-33163.
Gennaro, R., Zanetti, M., Benincasa, M., Podda, E., and Miani, M. (2002) Pro-rich antimicrobial peptides from animals: structure, biological functions and mechanism of action. Curr Pharm. Des 8, 763-778.
Gross, P.S., Bartlett, T.C., Browdy, C.L., Chapman, R.W., and Warr, G.W. (2001) Immune gene discovery by expressed sequence tag analysis of hemocytes and hepatopancreas in the Pacific White Shrimp, Litopenaeus vannamei, and the Atlantic White Shrimp, L. setiferus. Dev Comp Immunol. 25, 565-577.
Gudmundsson, G.H., Agerberth, B., Odeberg, J., Bergman, T., Olsson, B., and Salcedo, R. (1996) The human gene FALL39 and processing of the cathelin precursor to the antibacterial peptides LL-37 in granulocytes. Eur J Biochem. 238, 325-332.
Gudmundsson, G.H., Lidholm, D.A., Asling, B., Gan, R., and Boman, H.G. (1991) The cecropin locus. J Biol Chem. 266, 11510-11517.
Hancock, R.E., and Scott, M.G. (2000) The role of antimicrobial peptides in animal defenses. Proc Natl Acad Sci U.S.A. 97, 8856-8861.
Hanzawa, H., Shimada, I., Kuzuhara, T., Komano, H., Kohda, D., Inagaki, F., and Natori S, Arata Y. (1990) 1H nuclear magnetic resonance study of the solution conformation of an antibacterial protein, sapecin. FEBS Lett. Sep 3; 269(2), 413-420.
Hetru, C., Hoffmann, D., and Bulet, P. (1998) Antimicrobial peptides from insects. In Brey, PT., Hultmark, D., editors. Molecular mechanisms of immune responses in insects. Chapman & Hall. 40-66.
Hirata, M., Shimomura, Y., Yoshida, M., Morgan, J.G., Palings, I., Wilson, D., Yen MH, Wright SC, and Larrick JW. (1994) Characterization of a rabbit cationic protein (CAP18) with lipopolysaccharide-inhibitory activity. Infect Immun. Apr; 62(4), 1421-1426.
Huang, H.W. (2000) Action of antimicrobial peptides: two-state model. Biochemistry. Jul 25; 39(29), 8347-8352.
Hultmark, D., Engstrom, A., Bennich, H., Kapur, R., and Boman, H.G. (1982) Insert immunity: isolation and structure of cecropin D and four minor antibacterial components from Cecropia pupae. Eur J Biochem. 127, 207-217.
Ishimare, K.,Akagawa-Matsushita,M.,and Muroga,K. (1995) Vibrio penaeicidae sp.nov.,a pathogen of kuruma prawns(Penaeus japonicus). Int J Syst Bacteriol. 45, 134-138.
Iwanaga, S., Muta, T., Shigenaga, T., Miura, Y., Seki, N., Saito, T., and Kawabata, S. (1994) Role of hemocyte-derived granular components in invertebrate defense. Ann N Y Acad Sci. 712, 102-116.
Kragol, G., Lovas, S., Varadi, G., Condie, B.A., Hoffmann, R., and Otvos, L. Jr. (2001) The antibacterial peptide pyrrhocoricin inhibits the ATPase actions of DnaK and prevents chaperone-assisted protein folding. Biochemistry. Mar 13; 40(10), 3016-3026.
Landon, C., Sodano, P., Hetru, C.,Hoffmann, JA., and Ptak, M. (1997) Solution structure of drosomycin, the first antifungal protein from insects. Prot Sci. 6, 1878-1884.
Larrick, J.W., Horata, M., Balint, R.F., Lee, J., Zhong, J., and Wright, S.C. (1995) Human CAP18: a novel antimicrobial lipopolysaccharide binding protein. Infect Immun. Apr; 63(4), 1291-1297.
Larrick, J.W., Horata, M, Zheng, H, Zhong, J, Bolin, D, Cavaillon, JM, Warren HS, and Wright SC. (1994) A novel granulocyte-derived peptide with lipopolysaccharide-neutralizing activity. J Immunol. Jan 1; 152(1), 231-240.
Larrick, J.W., Hriata, M., Balint, R. F., Lee, J., Zhong, J., and Wright, S. C. (1995) Human CAP18: a novel antimicrobial lipopolysaccharide- binding protein. Infect Immun. 63, 1291-1297.
Larrick, J.W., Lee, J., Ma, S., Li, X., Francke, U., Wright, S. C., and Balint, R. F. (1996) Structural, functional analysis and localization of the human CAP18 gene. FEBS Lett. 398, 74-80.
Lee, K.K., Yu, S.R., Chen, F.R., Yang, T.I., and Liu, P.C. (1996) Virulence of Vibrio alginolyticus isolated from diseased tiger prawn, Penaeus monodon. Curr Microbiol 32, 229-231.
Lem, J.Y., Nishimura, C., Kurata, S., Shimada, I., Kobayashi, A., and Natori, S. (1996) Purification and characterization of N-b-alanyl-5-glutathionyl-3, 4- dihydroxyphenylalanine, a novel antibacterial substance of Sarcophaga Peregrina (flesh fly). J Biol Chem. 271, 13573-13577.
Lightner, D.V., Redman, R.M., Poulos, B.T., Nunan, L.M., Mari, J.L., and Hasson, K.W. (1997) Risk of spread of penaeid shrimp viruses in the Americas by international movement of live and frozen shrimp. Rev Sci Tech Off Int Epiz. 16, 140-160.
Liao, I.C., Huang, T.L., and Kastsutani, K. (1969) A preliminary report on artificial. Propagation of Penaeus monodon Fabricius, JCCR Fish. Ser., 8, 67-71
Lioa, I.C., and Murai T. (1985) Some essential factors in prawn culture and development-with special reference to achievements in Taiwan. Presented at II Simposio Brasileiro Sobre Cultivo de Camarao, Parnaiba, Piani, Brasil.
Mackintosh, J.A., Gooley, A.A., Karuso, P.H., Beattie, A.J., Jardine, D.R., and Veal DA. (1998)A gloverin-like antibacterial protein is synthesized in Helicoverpa armigera following bacterial challenge. Dev Comp Immunol. Jul-Aug; 22(4), 387-399.
Mandard, N., Sodano, P., Labbe, H., Bonmatin, J-M., Bulet, P., Hetru, C., Ptak, M., and Vovelle, F. (1998) Solution structure of thanatin, a potent bactericidal and fungicidal insect peptide, determined from proton two- dimensional nuclear magnetic resonance data. Eur J Biochem. 256, 404-410.
Martin, BL., and Graves, D.J. (1988) Application of 19F nuclear magnetic resonance to examine covalent modification reactions of tyrosyl derivatives: a study of calcineurin catalysis. Anal Biochem. 170, 152-160.
Martin, G.G., and Graves, B.L. (1985) Fine structure and classification of shrimp hemocytes. J. Morphol., 185, 339-348
Martin, G. G., and Hose, J.E. (1992) Vascular element and blood (hemolymph). In Microscopic Anat of Inver. 10, 117-146.
Martin, G.G, Hose, J.E., Omori, S., Chong, C., Hoodbhoy, T. and McKrell, N., (1991) Location and roles of coagulogen and transglutaminase in hemolymph coagulation in decapod crustaceans. Comp Biochem Physiol, 100, 517-522
Matsuzaki, K. (1999) Why and how are peptide-lipid interactions utilized for self-defense? Magainins and tachyplesins as archetypes. Biochim Biophys Acta. 1462, 1-10.
Matsuzaki, K., Murase, O., Tokuda, H., Funakoshi, S. Fujii, N., and Miyajima K. (1994) Orientational and aggregational states of magainin 2 in phospholipid bilayers. Biochemistry. Mar 22; 33(11), 3342-3349.
McManus, A.M., Otvos, L. Jr, Hoffmann, R., and Craik, D.J. (1999) Conformational studies by NMR of the antimicrobial peptide, drosocin, and its non-glycosylated derivative: effects of glycosylation on solution conformation. Biochemistry. 38(2), 705-714.
Michaut, L., Fehlbaum, P., Moniatte, M., Van Dorsselaser, A., Reichhart, JM., and Bulet, P. (1996) Determination of the disulfidearray of the first inducible antifungal peptide frominsects: drosomysin from Drosophila melanogaster. FEBS Lett. 395, 6-10.
Mitta, G., Hubert, F., Dyrynda, E.A., Boudry, P., and Roch, P. (2000) Mytilin B and MGD2, two antimicrobial peptides of marine mussels: gene structure and expression analysis. Dev Comp Immunol. 24, 381-393.
Mitta, G., Hubert, F., Noel, T., and Roch P. (1999) Myticin, a novel cysteine-rich antimicrobial peptide isolated from haemocytes and plasma of the mussel Mytilus galloprovincialis.Eur J Biochem. 1; 265(1), 71-78.
Mitta, G., Vandenbulcke, F., and Roch, P. (2000) Original involvement of antimicrobial peptides in mussel innate immunity. FEBS Lett. 486, 185-190.
Munoz, M., Vandenbulcke, F., Gueguen, Y., and Bachere, E. (2003) Expression of penaeidin antimicrobial peptides in early larval stages of the shrimp Penaeus vannamei. Dev Comp Immunol. 27, 283-289.
Munoz, M., Vandenbulcke, F., Saulnier, D., and Bachere, E. (2002) Expression and distribution of penaeidin antimicrobial peptides are regulated by haemocyte reactions in microbial challenged shrimp. Eur J Biochem. 269, 2678-2689.
Newman, M.C., and Feng, S.Y. (1982) Susceptibility and resistance of the rock crab, Cancer irroratus, to natural and experimental bacterial infection. J Invert Pathol. 40, 75-88.
Noga, E.J., Arroll, T.A., Bullis, R.A., and Khoo, L. (1996a) Antibacterial activity in hemolymph of white shrimp, Penaeus setiferus. J Mar Biotechnol. 4, 181-184.
Noga, E.J., Arroll, T.A., and Fan, Z. (1996b) Specificity and some physiochemical characteristic of the antibacterial activity from the blue carb Callinectes sapidus. Fish Shellfish Immunol. 6, 403-412.
Omori, S.A., Martin, G.G., and Hose, J.E. (1989) Morphology of haemocyte lysis and clotting in the ridgeback prawn Sicyonia ingentis. Cell Tissue Res. 255, 117-123.
Oren, Z., Shai, Y. (1996) A class of highly potent antibacterial peptides derived from pardaxin, a pore-forming peptide isolated from Moses sole fish Pardachirus marmoratus. Eur J Biochem. 237, 303-310.
Otvos, L., Jr. (2002) The short proline-rich antibacterial peptide family. Cell Mol Life Sci. 59, 1138-1150.
Pan, J., Kurosky, A., Xu, B., Chopra, A.K., Coppenhaver, D.H., Singh, I.P., and Baron, S. (2000) Broad antiviral activity in tissues of crustaceans. Antiviral Res. 48, 39-47.
Panyutich, A., Shi, J., Boutz, P. L., Zhao, C., and Ganz, T. (1997) Porcine polymorphonuclear leukocytes generate extracellular microbicidal activity by elastase-mediated activation of secreted proprotegrins, Infect Immun. 65, 978-985.
Perazzolo, L.M., and Barracco, M.A. (1997) The prophenoloxidase activating system of the shrimp Penaeus paulensis and associated factors. Dev Comp Immunol. 21, 385-395.
Persson, M., Vey,. A, and Soderhall, K. (1987) Encapsulation of foreign particles in vitro by separated blood cells from crayfish, Astacus leptodactylus. Cell Tissue Res, 247, 409-415.
Piers, K.L., Brown, M.H., and Hancock, R.E. (1994) Improvement of outer membrane-permeabilizing and lipopolysaccharide-binding activities of an antimicrobial cationic peptide by C-terminal modification. Antimicrob Agents Chemother. Oct; 38(10), 2311-2316.
Pouny, Y., Rapaport D, Mor A, Nicolas P, and Shai Y. (1992) Interaction of antimicrobial dermaseptin and its fluorescently labeled analogues with phospholipid membranes. Biochemistry.Dec 15; 31(49), 12416-12423.
Qu, Z., Steiner, H., Engstrom, A., Bennich, H., and Boman, H. G. (1982) Insert immunity: isolation and structure if cecropins B pernyi. Eur J Biochem. 127, 219-224.
Ritonja A, Kopitar M, Jerala R, and Turk V. (1989) Primary structure of a new cysteine proteinase inhibitor from pig leucocytes. FEBS Lett. Sep 25; 255(2), 211-214.
Rodriguez, J., Boulo, V., Mialhe, E., and Bachere, E. (1995) Characterisation of shrimp haemocytes and plasma components by monoclonal antibodies. J Cell Sci. 108(Pt 3), 1043-1050.
Sawyer, J.G., Martin, N.L., and Hancock, R.E. (1988) Interaction of macrophage cationic proteins with the outer membrane of Pseudomonas aeruginosa. Infect Immun.Mar;56(3), 693-698.
Shai, Y. (1995)Molecular recognition between membrane-spanning polypeptides. Trends Biochem Sci. Nov; 20(11), 460-464.
Shai, Y. (1999)Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by alpha-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochim Biophys Acta. Dec 15; 1462(1-2), 55-70.
Skerlavaj B, Gennaro R, Bagella L, Merluzzi L, Risso A, and Zanetti M. (1996) Biological characterization of two novel cathelicidin-derived peptides and identification of structural requirements for their antimicrobial and cell lytic activities. J Biol Chem. Nov 8; 271(45), 28375-28381.
Soderhall, K. and Cerenius, L. (1998) Role of the prophenoloxidase activating system in invertebrate immunity. Curr Opin Immunol. 10, 23-28
Soderhall, K. and Smith, VJ. (1983) Separation of the haemocyte populations of Carcinus maenas and other marine decapods, and prophenoloxidase distribution. Dev Comp Immunol. 7, 229-239.
Soderhall, K., Cerenius, L., and Johansson, M.W. (1996) The prophenoloxidase activating system in invertebrates. In: Soderhall, K., Iwanaga, S., Vasta, G.R. Eds. ,New Direc. In Invert. Immun. SOS Publications, Fair Haven, pp. 229-253.
Soderhall, K., Rantamäki, J., and Constantinescu, O. (1993) Isolation of Trichosporon beigelii from the freshwater crayfish, Astacus astacus. Aquaculture. 116, 25-31.
Soderhall, K., Smith V. J., and Johansson, M.W. (1986) Exocytosis and uptake of bacteria by isolated hemocyte populations of two crustacean : Evidance for cellular cooperation in the defense reaction of arthropods. Cell Tissue Res. 245, 43-49.
Song, Y. L., W. Cheng, and Wang, C. H. (1993) Isolation and characterization of Vibrio damsela infectious for cultured shrimp in Taiwan. Journal of Invertebrate Pathology. 61(1), 24-31.
Sorensen, O., Bratt, T., Johnsen, A.H., Madsen, M.T., and Borregaard, N. (1999) The human antibacterial cathelicidin, hCAP-18, is bound to lipoproteins in plasma. J Biol Chem. Aug 6; 274(32), 22445-22451.
Stewart, J.E., and Zwicker, B.M. (1972) Natural and induced bactericidal activities in the hemolymph of the lobster. Homarus americanus: products of hemocyte-plasma interaction. Can J Microbiol. 18, 1499-1509.
Storici, P., and Zanetti, M. (1993) A cDNA derived from pig bone marrow cells predicts a sequence identical to the intestinal antibacterial peptide PR-39. Biochem. Biophys. Res Commun. 196, 1058-1065.
Storici, P., Scocchi, M., Tossi, A., Gennaro, R., and Zanetti, M. (1994) Chemical synthesis and biological activity of a novel antibacterial peptide deduced from a pig myeloid cDNA. FEBS Lett. Jan 17; 337(3), 303-307.
Thevissen, K., Osborn, R.W., Acland, D.P., and Broekaert, W.F. (1997) Specific, high affinity binding sites for an antifungal plant defensin on Neurospora crassa hyphae and microsomal membranes. J Biol Chem. Dec 19; 272(51), 32176-32181.
Tait, J. (1911). Types pf crustacean blood coagulation. J mar Biol Asso. UK. 9, 191-198.
Tossi, A., Sandri, L., and Giangaspero, A. (2000) Amphipathic, alpha-helical antimicrobial peptides. Biopolymers. 55(1), 4-30.
Verbanac, D., Zanetti, M., and Romeo, D. (1993) Chemotactic and protease- inhibiting activities of antibiotic peptide precursors. FEBS Lett. Feb 15; 317(3), 255-258.
Vizioli, J., and Salzet, M. (2002) Antimicrobial peptides from animals: focus on invertebrates. Trends Pharmacol Sci. 23, 494-496.
Wachinger, M., Kleinschmidt, A., Winder, D., Pechmann, N. V., Ludvigsen, A., Neumann, M., Holle, R., Salmons, B., Erfle, V., and Brack-Werner, R. (1998) Antimicrobial peptides melittin and cecropin inhibit replication of human immunodeficiency virus 1 by suppressing niral gene expression. J Gen virol. 79, 731-740.
Wiik, R., Torsvik, V. and Egidius, E. (1986) Phenotypic and genotypic comparisons among strains of the lobster pathogen, Aerococcus viridans, and other marine Aerococcus viridans-like cocci. Int J Syst Bacteriol. 36, 431-434.
Yang, Y., Poncet, J., Garnier, J., Zatylny, C., Bachere, E., and Aumelas, A. (2003) Solution structure of the recombinant penaeidin-3, a shrimp antimicrobial peptide. J Biol Chem.
Yeaman, M.R., Yount, N.Y. (2003) Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev. 55, 27-55.
Yount, N.Y., Yuan, J., Traver, A., Castro, T., Diamond, G., Tran, P.A., Levy, J. N., McCullough, C., Cullor, J. S., Bevins, C. L., and Selsted, M. E. (1999) Cloning and expression of bovine neutrophil beta-defensins. Biosynthetic Profile during neutrophilic maturation and localization of mature peptide to novel cytoplasmic dense granules. J. Biol. Chem. 274, 26249-26258.
Zanetti, M., Litteri, L., Gennaro, R., Horstmann, H., and Romeo, D. (1990) Bactenecins, defense polypeptides of bovine neutrophils, are generated from precursor molecules stored in the large granules. J cell Biol . 111, 1363-1371.
Zarember, B.K. Elsbach, P., Shin-Kim, K., and Weiss, J. (1997) p15s (15-kD antimicrobial proteins) are stored in the secondary granules of Rabbit granulocytes: implications for antibacterial synergy with the bacterial/ permeability-increasing protein in inflammatory fluids. Blood. 89, 672-679.
Zasloff, M. (1987) Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc Natl Acad Sci U S A. 84, 5449-5453.
Zasloff, M., (2002) Antimicrobial peptides of multicellular organisms. Nature. 415, 389-395.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top