|
[1] Gleason, J. E., and Stewart, A. L., 1920, Method of and Machine for Cutting Gears or Wheels, US Patent 1,349,951 (The Gleason Works). [2] Shtipelman, B. A., 1978, Design and Manufacture of Hypoid Gears, John Wiley and Sons, Chichester, NY. [3] Litvin, F. L., and Gutman, Y., 1981, “Methods of Synthesis and Analysis for Hypoid Gear-Drives of Format and Helixform, Part 1, 2 and 3,” ASME J. Mech. Des., 103(1), pp. 83–113. [4] Litvin, F. L., Zhang, Y., Lundy, M., and Heine, C., 1988, “Determination of Settings of a Tilted Head Cutter for Generation of Hypoid and Spiral Bevel Gears,” J. Mech. Transm. Autom. Des., 110(4), pp. 495–500. [5] Litvin, F. L., 1989, Theory of Gearing, NASA Reference Publication No. 1212, Washington, DC. [6] Litvin, F. L., and Zhang, Y., 1991, “Local Synthesis and Tooth Contact Analysis of Face-Milled Spiral Bevel Gear,” NASA Technical Report No. 90–C–028, Washington, DC. [7] Litvin, F. L., Chaing, W. S., Kuan, C., Lundy, M., and Tsung, W. J., 1991, “Generation and Geometry of Hypoid Gear-Member with Face-Hobbed Teeth of Uniform Depth,” Int. J. of Mach. Tools Manufact., 31(2), pp. 167–181. [8] Litvin, F. L., Zhang, Y., Kieffer, J., and Handschuh, R. F., 1991, “Identification and Minimization of Deviations of Real Gear Tooth Surfaces,” ASME J. Mech. Des., 113(3), pp. 55–62. [9] Litvin, F. L., Kuan, C., Wang, J.-C., Handschuh, R. F., Masseth, J., and Maruyama, N., 1993, “Minimization of Deviations of Gear Real Tooth Surfaces Determined by Coordinate Measurements,” ASME J. Mech. Des., 115(4), pp. 995–1001. [10] Zhang Y, Litvin, F. L., and Handschuh, R. F., 1995, “Computerized Design of Low-Noise Face-Milled Spiral Bevel Gears,” Mech. Mach. Theory, 30(8), pp. 1171–1178. [11] Litvin, F. L., Chen, J. S., Lu, J., and Handschuh, R. F., 1996, “Application of Finite Element Analysis for Determination of Load Share, Real Contact Ratio, Precision of Motion, and Stress Analysis,” ASME J. Mech. Des., 118(4), pp. 561–567. [12] Fuentes, A., Litvin, F. L., Mullins, B. R., Woods, R., and Handschuh, R. F., 2002, “Design and Stress Analysis of Low-Noise Adjusted Bearing Contact Spiral Bevel Gears,” ASME J. Mech. Des., 124(3), pp. 524–532. [13] Litvin, F. L., and Fuentes, A., 2004, Gear Geometry and Applied Theory, 2nd edition, Cambridge University Press, New York, NY. [14] Krenzer, T. J., 1981, Tooth Contact Analysis of Spiral Bevel Gears and Hypoid Gears Under Load, The Gleason Works, Rochester, NY. [15] Krenzer, T. J., 1984, “Computer Aided Corrective Machine Settings for Manufacturing Bevel and Hypoid Gear Sets,” AGMA Paper 84FTM4, Fall Technical Meeting, Washington, DC. [16] Krenzer, T. J., 1985, Cutter and Method for Gear Manufacture, US Patent 4,525,108 (The Gleason Works). [17] Krenzer, T. J., 1991, Multi-Axis Bevel and Hypoid Gear Generating Machine, US Patent 4,981,402 (The Gleason Works). [18] Stadtfeld, H. J., 1989, Bevel and Hypoid Gears, Oerlikon Bührle AG, Zürich. [19] Stadtfeld, H. J., 1993, Handbook of Bevel and Hypoid Gears, The Gleason Works, Rochester, NY. [20] Stadtfeld, H. J., 2000, Advanced Bevel Gear Technology, The Gleason Works, Rochester, NY. [21] Stadtfeld, H. J., and Gaiser, U., 2000, “The Ultimate Motion Graph,” ASME J. Mech. Des., 122(3), pp. 317–322. [22] Goldrich, R. N., 1989, Theory of 6-Axis CNC Generation of Spiral Bevel Gear and Hypoid Gears, The Gleason Works, Rochester, NY. [23] Fong, Z-H., and Tsay, C-B., 1991, “A Mathematical Model for the Tooth Geometry of Circular-Cut Spiral Bevel Gears,” ASME J. Mech. Des., 113(2), pp. 174–181. [24] Fong, Z-H., and Tsay, C-B., 1991, “A Study on the Tooth Geometry and Cutting Machine Mechanisms of Spiral Bevel Gears,” ASME J. Mech. Des., 113(2), pp. 346–351. [25] Fong, Z-H., and Tsay, C-B., 1992, “The Undercutting of Circular-Cut Spiral Bevel Gears,” ASME J. Mech. Des., 114(2), pp. 317–325. [26] Fong, Z-H., and Tsay, C-B., 1992, “Kinematical Optimization of the Spiral Bevel Gears,” ASME J. Mech. Des., 114(3), pp. 498–506. [27] Lin, C-Y., Tsay, C-B., and Fong, Z-H., 1997, “Mathematical Model of Spiral Bevel and Hypoid Gears Manufactured by the Modified Roll Method,” Mech. Mach. Theory, 32(2), pp. 121–136. [28] Lin, C-Y., Tsay, C-B., and Fong, Z-H., 1998, “Computer-Aided Manufacturing of Spiral Bevel and Hypoid Gears with Minimum Surface-Deviation,” Mech. Mach. Theory, 33(6), pp. 785–803. [29] Lin, C-Y., Tsay, C-B., and Fong, Z-H., 2001, “Computer-Aided Manufacturing of Spiral Bevel and Hypoid Gears by Applying Optimization Techniques,” J. Mater. Process. Technol. , 114(1), pp. 22–35. [30] Fong, Z-H., 2000, “Mathematical Model of Universal Hypoid Generator with Supplemental Kinematic Flank Correction Motions,” ASME J. Mech. Des., 122(1), pp. 136–142. [31] Wang, P-Y., and Fong, Z-H., 2005, “Adjustability Improvement of Face-Milling Spiral Bevel Gears by Modified Radial Motion (MRM) Method,” Mech. Mach. Theory, 40(1), pp. 69–89. [32] Wang, P-Y., and Fong, Z-H., 2005, “Mathematical Model of Face-Milling Spiral Bevel Gear with Modified Radial Motion (MRM) Correction,” Math. Comput. Model., 41(11–12), pp. 1307–1323. [33] Wang, P-Y., and Fong, Z-H., 2006, “Fourth-Order Kinematic Synthesis for Face-Milling Spiral Bevel Gears with Modified Radial Motion (MRM) Correction,” ASME J. Mech. Des., 128(2), pp. 457–467. [34] Gosselin, C., Cloutier, L., and Nguyen, Q. D., 1995, “A General Formulation for the Calculation of the Load Sharing and Transmission Error under Load of Spiral Bevel and Hypoid Gears,” Mech. Mach. Theory, 30(3), pp. 433–450. [35] Gosselin, C., Nonaka, T., Shiono, Y., Kubo, A., and Tatsuno, T., 1998, ‘‘Identification of the Machine Settings of Real Hypoid Gear Tooth Surfaces,’’ ASME J. Mech. Des., 120(2), pp. 429–440. [36] Simon, V., 2000, “Load Distribution in Hypoid Gears,” ASME J. Mech. Des., 122(4), pp. 529–535. [37] Simon, V., 2001, “Optimal Machine Tool Setting for Hypoid Gears Improving Load Distribution,” ASME J. Mech. Des., 123(4), pp. 577–582. [38] Käsler, N., Krause, D., Lamsfuss, H., Ozdyk, K., Wiener, D., 1999, Machine for Producing Spiral-Toothed Bevel Gears, US Patent 5,961,260 (Klingelnberg). [39] Vogel, O., Griewank, A., and Bär, G., 2002, “Direct Gear Tooth Contact Analysis for Hypoid Bevel Gears,” Comput. Methods Appl. Mech. Engrg. 191(36), pp. 3965–3982. [40] Thomas, J., and Vogel, O., 2005, “6M Machine Kinematics for Bevel and Hypoid gears,” Proceedings of the International Conference on Gears in Munich, VDI Report No. 1904, pp. 435–451. [41] Lelkes, M., Marialigeti, J., and Play, D., 2002, “Numerical Determination of Cutting Parameters for the Control of Klingelnberg Spiral Bevel Gear Geometry,” ASME J. Mech. Des., 124(4), pp. 761–771. [42] Achtmann, J., and Bär, G., 2003, “Optimized Bearing Ellipses of Hypoid Gears,” ASME J. Mech. Des., 125(4), pp. 739–745. [43] Rogers, D. F., and Adams. J. A., 1990, Mathematical Elements for Computer Graphics, 2nd Edition, McGraw-Hill, New York, NY. [44] Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T., 1992, Numerical Recipes in C, 2nd Edition, Cambridge University Press., New York, NY. [45] ASNI/AGMA 2005–C96, Design Manual for Bevel Gears, Alexandria, VA. [46] ISO 10300 Part 1 to 3: 2001, Calculation of Load Capacity of Bevel Gears, Switzerland. [47] Klingelnberg Standard KN3028, Geometry and Manufacturing, Zürich. [48] 北京齒輪廠編著, 1974, 螺旋錐齒輪, 科學出版社, 北京. [49] 鄭昌啟, 1988, 弧齒錐齒輪和準雙曲面齒輪-嚙合原理、齒胚設計、加工調整和齒面分析計算原理, 機械工業出版社, 北京. [50] 曾韜, 1989, 螺旋錐齒輪設計與加工, 哈爾濱工業大學出版社, 哈爾濱. [51] 董學朱, 2002, 翻u齒錐齒輪及準雙曲面齒輪設計和製造, 機械工業出版社, 北京.
|