|
Chapter 1 [1.1] T.H. Lee; “The Design of CMOS Radio Frequency Integrated Circuits.” Cambridge, U.K. Cambridge Univ. Press, 1998. [1.2] Cheon Soo Kim; Hyun Kyu Yu; “CMOS layout and bias optimization for RF IC design applications,” IEEE MTT-S, Microwave Symposium Digest, pp.945-948, 1997. [1.3] Abidi, A.A.;” RF CMOS comes of age,” IEEE VLSI Circuits, pp.113-116, June. 2003. [1.4] C.S. Kim; M. Park, C-H.Kim; Y.C.Hyeon; K.Lee, K.S.Nam; “A fully integrated 1.9 GHz CMOS low-noise-amplifier,” IEEE Microwave Guided Wave Lett., vol.8, pp.293-295, Aug. 1998. [1.5] T.H.Lee; A. Haimiri;”Design issue in CMOS differential LC Oscillators,” IEEE J.Solid-State Circuits, vol.34, pp.717-724, May 1999. [1.6] R. Castello; F. Sevelto; S. Deantoni; “A 1.3GHz low phase noise fully tuneable CMOS LC VCO,” IEEE J.Solid-State Circuits, vol.35, pp.356-361, Mar 2000. [1.7] Yo-Sheng Lin; Tai-Hsing Lee; Hsiao-Bin Liang; Shey-Shi Lu;” Characterization and modeling of 100 nm RF generic CMOS and 500 nm RF power CMOS,” IEEE VLSI Technology, System, and Applications, pp.105-108.,Oct. 2003. [1.8] Sulivan, P.J.; Xavier, B.A.; Ku, W.H. “Low voltage performance of a microwave CMOS Gilbert cell mixer”, IEEE J.Solid-State Circuits, vol.32, pp.1151-1155, 1997. [1.9] Saito, M; Ono, M.”0.15μm RF CMOS technology compatible with logic CMOS for low-voltage operation”, IEEE Trans. Electron Devices, vol. 45, pp.737-742, 1998. [1.10] B. E. Weir, “Ultra-thin gate dielectrics: they break down, but do they fail?,” IEDM Technical Digest, pp. 73-76, 1997. [1.11] B. Kaczer, R. Degraeve, G. Groeseneken, “Impact of MOSFET oxide breakdown on digital circuit operation and reliability,” IEDM Technical Digest, pp. 553-556, 2000. [1.12] Sasan Naseh; M.Jamal Deen; “Effects of Hot-Carrier Stress on the Performance of CMOS Low Noise Amplifier,” IEEE International Reliability Physics Symposium, p.417-421, 2004. [1.13] Enjun Xiao; J.S.Yuan; Hong Yang;” CMOS RF and DC Reliability Subject to Hot Carrier Stress and Oxide Soft Breakdown, “IEEE Transactions on Device and Materials Reliability, vol.4, pp.92-98, Mar. 2004. [1.14] Luigi Pantisano; D.Schreurs; B.kaczer; W.Jeamsaksiri; R.Venegas; R.Degraeve; K.P.Cheung; G..Groeseneken; “RF Performance Vulnerability to Hot Carrier Stress and Consequent Breakdown in Low Power 90nm RFCMOS,” IEDM Technical Digest, pp. 7.7.1 - 7.7.4, 2003. [1.15] Wei-Cheng Lin; Long-Jei Du; Ya-Chin King;” Reliability evaluation of voltage controlled oscillators based on a device degradation sub-circuit model,” IEEE Radio Frequency Integrated Circuits Symposium, pp.377-380, 2003. [1.16] Qiang Li; Wei Li; Jinlong Zhang; Yuan, J.S.; “ Soft breakdown and hot carrier reliability of CMOS RF mixer and redesign,” IEEE Radio Frequency Integrated Circuits Symposium, pp. 399-402, 2002. [1.17] Hong Yang, Wade Smith, J.S Yuan, “Gate oxide breakdown on low noise and power amplifier performance,” IEEE MTT-S, pp. 149-152, 2003. [1.18] Wei-Cheng Lin; Tsung-Chieh Wu; Yi-Horn Tsai; Ya-Chin King;” Reliability Evaluation and Redesign of LNA,” Microelectronic Reliability, vol.44, pp.1727-1732, 2004. [1.19] Wei-Cheng Lin; Long-Jei Du; Ya-Chin King;” Reliability evaluation of Gilbert Cell Mixer Based On a Hot-Carrier Stressed Device Degradation Model,” IEEE Radio Frequency Integrated Circuits Symposium, pp.387-390, 2004. [1.20] NATHAN O. SOKAL, ALAN D.SOKAL; “Class-E- A New Class of High-Efficiency Tuned Single-Ended Switching Power Amplifiers,” IEEE J. Solid-State Circuits, vol.SC-10, pp.168-176, 1975. [1.21] Wei-Cheng Lin; Long-Jei Du; Ya-Chin King;” Reliability evaluation and Comparison of Class-E and Class-A Power Amplifiers with 0.18μm CMOS Technology”, IEEE International Reliability Physics Symposium, pp.415-416, 2004. [1.22] Quader, K.N.; Minami, E.R.; Wei-Jen Huang; Ko, P.K.; Chenming Hu; “Hot-carrier reliability design guidelines for CMOS logic circuits,” IEEE Custom Integrated Circuits Conference, pp30.7.1-30.7.4,1993. [1.23] Quader, K.N.; Ko, P.K.; Hu, C.; Fang, P.; Yue, J.T.;” Simulations of CMOS circuit degradation due to hot-carrier effects, IEEE Reliability Physics Symposium, pp.16-23, 1992 [1.24] Qiang Li; Jinlong Zhang; Wei Li; Yuan, J.S.; Yuan Chen; Oates, A.S.;” RF circuit performance degradation due to soft breakdown and hot-carrier effect in deep-submicrometer CMOS technology,” IEEE Transactions on Microwave Theory and Techniques, vol.49, pp.1546-1551, Sep. 2001. Chapter 2 [2.1] T.H.Ning, P.W.Cook, R.H.Dennard, “1μm MOSFET VLSI technology: Part IV-hot-electron design constrains,” IEEE Trans. Electron Devices, vol.ED-26, pp.346-353, 1979. [2.2] P.E. Cottrell, R.R Troutman, “Hot-electron emission in n-channel IGFET’s”, IEEE Trans. Electron Device Lett., vol.ED-26, pp.520-532, 1979. [2.3] Z.A. Weinberg, “On tunneling in metal-oxide-semiconductor structures”, J.Appl. Phy., vol.53,pp.5052-5056,1982. [2.4] B. Kaczer, R. Degraeve, G. Groeseneken, “Impact of MOSFET oxide breakdown on digital circuit operation and reliability,” IEDM Technical Digest, pp. 553-556, 2000. [2.5] Qiang Li; Wei Li; Jinlong Zhang; Yuan, J.S.; “Soft breakdown and hot carrier reliability of CMOS RF mixer and redesign,” IEEE Radio Frequency Integrated Circuits Symposium, pp. 399-402, 2002. [2.6] H.Iwai, H.s.Momose, “Ultra-Thin gate oxides-performance and reliability, “IEDM Technical Digest, pp.163-166, 1998. [2.7] J.W.McPherson, H.C.Mogul, “Underlying physics of the thermochemical E model in describing low-field time-dependent dielectric breakdown in SiO2 thin films,” J.Appl. Phys., vol.84, pp.1513-1523, 1998. [2.8] R.Degraeve, G. Groeseneken, R. Bellens, J.L.Orier, M.Depas, P.J. Roussel, and H.E.Maes, “New insights in the relation between electron trap generation and the statistical properties of oxide breakdown,” IEEE Trans. Electron Devices, vol.45, pp.904-911,1998. [2.9] J.S.Suehle and P.Chaparala, “Low electric field breakdown of thin SiO2 films under static and dynamic stress,” IEEE Trans. Electron Devices, vol.44, pp.801-808, 1997. [2.10] I. C. Chen, S. Holland, and C. Hu, “Oxide breakdown dependence on thicknessand hole current - enhanced reliability of ultra thin oxides,” IEDM Technical Digest, pp. 660-663, 1986. [2.11] K. F. Schuegraf and C. Hu, “Hole Injection Oxide Breakdown Model for Very Low Voltage Lifetime Extrapolation,” IEEE Reliability Physics Symposium, pp. 7-12, 1993. [2.12] K. F. Schuegraf and C. Hu, “Effect of Temperature and Defects on Breakdown Lifetime of Thin SiO2 at Very Low Voltages,” IEEE Trans. Electron Devices, vol. 41, no. 7, pp. 1227-1232, July 1994. [2.13] K. F. Schuegraf and C. Hu, “Hole Injection SiO2 Breakdown Model for Very Low Voltage Lifetime Extrapolation,” IEEE Trans. Electron Devices, vol. 41, no. 5, pp. 761-767, May 1994. [2.14] R. Degraeve, G. Groeseneken, R. Bellens, J. L. Ogier, M. Depas, P. J. Roussel, and H. E. Maes, “New Insights in the Relation Between Electron Trap Generation and the Statistical Properties of Oxide Breakdown,” IEEE Trans. Electron Devices, vol. 45, no. 4, pp. 904-911, April 1998. [2.15] K. F. Schuegraf and C. Hu, “Hole Injection Oxide Breakdown Model for Very Low Voltage Lifetime Extrapolation,” IEEE Reliability Physics Symposium, pp. 7-12, 1993. [2.16] D. J. DiMaria, E. Cartier, and D. A. Buchanan, “Anode hole injection and trapping in silicon dioxide,” J.Appl.Phys., vol. 80 , pp. 304-317, July 1996. [2.17] D. J. DiMaria and J.W. Stasiak, “Trap creation in silicon dioxide produced by hot electrons,” J. Appl. Phys., vol. 65, no. 6, pp. 2342-2356, March 1989. [2.18] E. Cartier and J. H. Stathis, “Atomic Hydrogen-Induced Degradation of the Si/SiO2 Structure,” Microelectron. Engin., vol. 28, pp. 3-10, 1995. [2.19] J. Maserjian and N. Zamani, “Behavior of the Si/SiO2 interface observed by Fowler-Nordheim tunneling,” J. Appl. Phys., vol. 53, pp. 559-567, Jan.1982. [2.20] R. Moazzami and C. Hu, “Stress-induced current in thin silicon dioxide,” IEDM Technical Digest, pp. 139-142, 1992. [2.21] H. Satake and A. Toriumi, “Common origin for stress-induced leakage current and electron trap generation in SiO2,” Appl. Phys. Lett., vol. 67, no. 23, pp. 3489-3490, Dec. 1995. [2.22] J. De Blauwe, R. Degraeve, R. Bellens, J. Van Houdt, Ph. Roussel, G. Groeseneken, and H. E. Maes, “Study of DC Stress Induced Leakage Current(SILC) and its Dependence on Oxide Nitridation,” Proc. ESSDERC, pp. 361-364, 1996. [2.23] J. De Blauwe, J. Van Houdt, D. Wellekens, R. Degraeve, Ph. Roussel, L. Haspeslagh, L. Deferm, G. Groeseneken, and H. E. Maes, “A new quantitative model to predict SILC-related disturb characteristics in Flash E2PROM devices,” IEDM Technical Digest, pp. 343-346, 1996. [2.24] H.M Lee, “Functional reliability study of MOS transistors with nano-scale gate oxides”, National Tsing-Hua University, Ph.D. dissertation, 2002. [2.25] K.R.Farmer, R.Salti, “Curren fluctuions and silicon war-out in metal oxide siconducor tunnel diodes,’’ Appl. Phys. Lett., pp.149-1751,1988. [2.26] S.H.Lee, B.J.Co, “Quasibreakdow of ultra-thin gate oxide under high field stress, “IEDM Technical Digest, pp.605-606, 1994 [2.27] K.Okada and K. Taniguchi,” Electrical stress induced variable range hopping conduction in ultra thin silicon dioxides,” Appl. Phys. Lett., vol.70, pp.351-353, 1997. [2.28] A.Halimaouia, O.Brierea, “Quasibreakdown in ultrathin gate dielectrics,” Microelectron. Eng., vol.36, pp.157-160, 1997. [2.29] M.Houssa, T.Nigam, “Model for the current –voltage characteristics of ultrathin oxides after soft breakdown,” J.Appl. Phys., vol.84, pp.4351-4355, 1998. [2.30] M.A.Alam, B.Weir, “Wxplanation of soft and hard breakdown and its consequences for area scaling,” IEDM Technical Digest, pp.449-452, 1999. [2.31] J. H. Stathis and D. J. DiMaria, “Reliability Projection for Ultra-Thin Oxides at Low Voltage,” IEDM Technical Digest, pp. 167-170, 1998. [2.32] S.M. Sze, Physics of Semiconductor Devices, 2nd Edition, John Wiley & Sons, Inc., 1981. [2.33] R. Degraeve, G. Groeseneken, R. Bellens, J. L. Ogier, M. Depas, P. J. Roussel, and H. E. Maes, “New Insights in the Relation Between Electron Trap Generation and the Statistical Properties of Oxide Breakdown,” IEEE Trans. Electron Devices, vol. 45, no. 4, pp. 904-911, April 1998. [2.34] J. L. Ogier, R. Degraeve, G. Groeseneken, and H. E. Maes, “On the Polarity Dependence of Oxide Breakdown in MOS-Devices with n+ and p+ Polysilicon Gate,” Proc. ESSDERC, pp. 763-766, 1996. [2.35] J.S.Suehle and K.F. Galloway, “Test circuit structures for characterizing the effects of localized hot-carrier induced charge in VLSI switching circuits,” IEEE Proc. Microelectronic Test Structure, vol.1, pp.126-131, February 1988. [2.36] Khanderker N. Quader, C.Hu, “A bidirectional NMOSFET current reduction model for simulation of hot carrier induced circuit degradation,” IEEE Trans. Electron Devices, vol.40, pp.2245-2254, 1993. [2.37] R.Rpdriguez, J.H.Stathis, “A model for gate oxide breakdown in CMOS inverters,” IEEE Electron Device Lett., vol.24, 2003. [2.38] Luigi Pantisano and B.Kaczer, “RF performance vulnerability to hot carrier stress and consequent breakdown in low power 90nm RFCMOS,” IEDM Technical Digest, 2003. Chapter 3 [3.1] E. Takeda and N. Suzuki, “An Empirical Model for Device Degradation Due to Hot-Carrier Injection,” IEEE Electron Device Lett., vol. EDL-4, no. 4, pp. 111-113, April 1983. [3.2] T. Horiuchi, H. Mikoshiba, K. Nakamura, and K. Hamano, “A Simple Method to Evaluate Device Lifetime Due to Hot-Carrier Effect Under Dynamic Stress,” IEEE Electron Device Lett, vol. EDL-7, no. 6, pp. 337-339, June 1986. [3.3] Kueing-Long Chen, Steve Saller, and Rajiv Shah, “The Case of AC Stress in the Hot- Carrier Effect,” IEEE Trans. Electron Devices, vol. ED-33, no. 3, pp. 424-426, March 1986. [3.4] W. Weber, “Dynamic Stress Experiment for Understanding Hot-Carrier Degradation Phenomena,” IEEE Trans. Electron Devices, vol. 35, pp. 1476, 1988. [3.5] R. Bellens, P. Heremans, G. Groeseneken, and H. E. Maes, “Analysis of Mechanisms for the Enhanced Degradation During AC Hot Carrier Stress of MOSFETs,” IEDM Technical Digest, pp. 212-215, 1988. [3.6] Peter M. Lee, Ping K. Ko, and Chenming Hu, “Relating CMOS Inverter Lifetime to DC Hot-Carrier Lifetime in nMOSFETSs,” Private Communication, Jan. 1990. [3.7] Chenming Hu, Simon C. Tam, Fu-Chieh Hsu, Ping-Keung Ko, Tung-Yi Chan, and Kyle W. Terrill, “Hot-Electron-Induced MOSFET Degradation-Model, Monitor, and Improvement,” IEEE Trans. Electron Devices, vol. ED-32, no. 2, pp. 375-384, February 1985. [3.8] S. Tam, F.-C. Hsu, C. Hu, R. S. Muller, and P. K. Ko, “Hot-Electron Currents in Very Short-Channel MOSFETS,” IEEE Electron Device Lett., vol. EDL-4, pp. 249, 1983. [3.9] “Understanding the fundamental principles of vector network analysis,” Agilent Technologies Application Note 1287-1. [3.10] Agilent Technologies Application Notes 1287-1: “Understanding the fundamental principles of vector network analyzers,” Pub.NO.5965-7710E, 1997. [3.11] Agilent Technologies Application Notes 1287-4: “Network analyzer measurements; Filter and amplifier examples,” Pub.NO.5965-7710E, 1997. [3.12] Cascade Microtech, “Microwave wafer probe calibration constants,” HP8510 network analyzer input instruction manual, 1990. [3.13] Cascade Microtech, “On wafer vector network analyzer calibration and measurements”, 1997, Pub Name PYRPROBE-0597. [3.14] Ickjin Kwon, Minkyu Je, “A simple and analytical parameter extraction method of a microwave MOSFET,” IEEE Transactions on Microwave Theory and Techniques, vol.50, 2002. Chapter 4 [4.1] Behzad Razavi, “RF Microelectronics: Chapter 5, Transceiver Architectures”, Prentice Hall Communication Engineering and Emerging Technology Series, 1997. [4.2] Jacques C. Rudell et al. “A 1.9-GHz Wide-Band IF Double Conversion CMOS Receiver for Cordless Telephone Applications,” IEEE J. Solid-State Circuits, vol. 32, pp. 2071-2088, Dec 1997. [4.3] Jan Crols and Michiel Steyaert, “CMOS Wireless Transceiver Design: Chapter 6, Building Blocks for CMOS Transceiver”, Kluwer Academic Publishers, 1997. [4.4] M. D. McDonald, “A 2.5GHz BICMOS Image-Reject Front-end,” ISSCC Dig. Tech. Papers, pp.144-145, February 1993. [4.5] Jan Crols and Michiel Steyaert, “CMOS Wireless Transceiver Design: Chapter 3, Transceiver in the Frequency Domain”, Kluwer Academic Publishers, 1997. [4.6] Paolo Orsatti, Francesco Piazza and Qiuting Huang, “A 20-mA-Receive, 55-mA-Transmit, Single-Chip GSM Transceiver in 0.25-um CMOS,” IEEE J. Solid-State Circuits, vol. 34, pp. 1869-1880, Dec 1999. [4.7] George D. Vendelin, Anthony M. Pavio and Ulrich L. Rohde, “Microwave Circuit Design: Using Linear and Nonlinear Techniques”, A Wiley-Interscience Publication, 1990. [4.8] Jan Crols and Michiel Steyaert, “CMOS Wireless Transceiver Design: Chapter 6, Building Blocks for CMOS Transceiver”, Kluwer Academic Publishers, 1997. [4.9] Pietro Andreani and Steven Mattisson,” On the use of MOS varavtors in RF VCO’s,” IEEE J. Solid-State Circuits, vol.35, 2000. [4.10] Behzad Razavi, “RF Microelectronics: Chapter 2, Basic Concepts in RF Design”, Prentice Hall Communication Engineering and Emerging Technology Series, 1997. Chapter 5 [5.1] Wei-Cheng Lin; Tsung-Chieh Wu; Yi-Horn Tsai; Ya-Chin King;” Reliability Evaluation and Redesign of LNA,”Microelectronic Reliability, vol.44, pp.1727-1732, 2004. [5.2] Wei-Cheng Lin; Long-Jei Du; Ya-Chin King;” Reliability evaluation of Gilbert Cell Mixer Based On a Hot-Carrier Stressed Device Degradation Model,” IEEE Radio Frequency Integrated Circuits Symposium, pp.387-390, 2004. [5.3] Wei-Cheng Lin; Long-Jei Du; Ya-Chin King;” Reliability evaluation of voltage controlled oscillators based on a device degradation sub-circuit model,” IEEE Radio Frequency Integrated Circuits Symposium, pp.377-380, 2003.
|