跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.36) 您好!臺灣時間:2025/12/10 15:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:施雅蓉
研究生(外文):Ya-Jung Shih
論文名稱:季每股盈餘之預測能力--根據時間序列及人工智慧模型
論文名稱(外文):The Predictive Power for the Quarterly Earnings Per Share based on Time Series and Artificial Intelligence Model
指導教授:賴秀卿賴秀卿引用關係李宏志李宏志引用關係
指導教授(外文):Syou-Ching LaiHung-Chih Li
學位類別:碩士
校院名稱:國立成功大學
系所名稱:財務金融研究所
學門:商業及管理學門
學類:財務金融學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:57
外文關鍵詞:Transfer FunctionARIMAGenetic AlgorithmEPS forecastArtificial Neural Network
相關次數:
  • 被引用被引用:1
  • 點閱點閱:515
  • 評分評分:
  • 下載下載:134
  • 收藏至我的研究室書目清單書目收藏:1
  本論文目的在於比較時間序列模型(自我回歸整合移動平均以及轉換函數模型)與人工智慧模式(類神經網路以及基因演算法)對季每股盈餘的預測能力。比較的觀點有二:一為估計值與實際值的偏離程度,二為預測方向的準確性。不論在偏離程度或是方向準確性方面,基因演算法皆優於轉換函數模型與類神經網路。
  此外,本論文亦考慮利用稀釋後每股盈餘來預測基本每股盈餘的預測能力,但因樣本公司潛在性稀釋證券轉換比率偏低,故在本研究中未能顯著證明稀釋後每股盈餘相對於基本每股盈餘而言,具有較佳的預測能力。
  The purpose of this study is to compare the forecasting ability among the ARIMA model, the Transfer Function model, the Artificial Neural Network model and the Genetic Algorithm model. To evaluate the forecasting accuracy, there are two dimensions taken into consideration: 1) the deviation between the actual quarterly EPS value and the forecasted quarterly EPS value, and 2) the changing direction from quarter to quarter between the actual quarterly EPS value and the forecasted quarterly EPS value.
  In the aspect of the deviation between the actual quarterly EPS value and the forecasted quarterly EPS value, the empirical results show that the Transfer Function model outperforms the ARIMA model. Therefore, the settings of time lags of the Transfer Function model are adopted to the other two models. The empirical results reveals that the Genetic Algorithm model shows the best forecasting accuracy in both dimensions while the Artificial Neural Network model shows the worst forecasting accuracy in both dimensions.
  In addition, both of the quarterly basic EPS data and the quarterly diluted EPS data were applied in forecasting future quarterly basic EPS. There is not enough evidence to support that using the diluted EPS data would yield higher accuracy than using the basic EPS data in the aspect of deviation. However, the empirical result shows that using the basic EPS data outperforms using the diluted EPS to forecast future basic EPS in the aspect of predicting the directions.
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Objectives 2
1.3 Organization 3
Chapter 2 Literature Review 5
Chapter 3 Methodology 12
3.1 The Data 12
3.2 Methodology 12
3.2.1 The ARIMA Model 12
3.2.2 The Transfer Function Model 15
3.2.3 The Artificial Neural Network Model 18
3.2.4 The Genetic Algorithm Model 19
3.3 Hypothesis Test 21
Chapter 4 Empirical Results 25
4.1 The ARIMA Model versus The Transfer Function Model 25
4.2 Artificial Neural Network Model versus Genetic Algorithm Model 30
4.3 Basic EPS Data versus Diluted EPS Data 37
4.4 The Results of Fisher Exact Test 39
4.5 The Results on the Basis of Firm Size 43
4.6 The Results on the Basis of Good News and Bad News 43
4.7 The Results on the Basis of Stock Return 44
Chapter 5 Conclusions 46
5.1 Conclusions 46
5.2 Suggestions 48
Reference 54
Bathke, A.W. Jr. and K.S. Lorek. 1984. The relationship between time-series models and the security market’s expectation of quarterly earnings. The Accounting Review, 59: 163-177.

Bradley, Wray E.. 2003. Improving Quarterly Earnings Estimates: The Predictive Ability of the Cash Reinvestment Ratio. Journal of American Academy of Business, Cambridge: 549-553.

Brown, L. and M. Rozaff. 1979. Univariate Time-Series Models of Quarterly Accounting Earnings Per Share: A Proposed Model. Journal of Accounting Research, 17(1): 179-189.

Callen, Jeffrey L., Clarence C.Y. Kwan, Patrick C.Y. Yip and Yufei Yuan. 1996. Neural network forecasting of quarterly accounting earnings. International Journal of Forecasting 12: 475-482.

Chen, Jan-Chu. 1995. Forecast Future Earnings Per Share Using Financial Ratios. Graduate Institute of Accounting, National Cheng Kung University.

Chua, C.G. and A. T. C. Goh. 2003. A Hybrid Bayesian Back-Propagation Neural Network Approach to Multivariate Modeling. International Journal for Numerical and Analytical Methods in Geomechanics 27: 651-667.

Coakley, James R. and Carol E. Brown. 2000. Artificial Neural Networks in Accounting and Finance: Modeling Issues. International Journal of Intelligent Systems in Accounting, Finance & Management 9: 119-144.

Collins, William A. and William S. Hopwood. 1980. A Multivariate Analysis of Annual Earnings Forecasts of Generated from Quarterly Forecasts of Financial Analysts and Univariate Time-Series Models. Journal of Accounting Research 18 (2): 390-406

Dechow, Patricia M., S.P. Kothari and Ross L. Watts. 1998. The Relation between Earnings and Cash Flows. Journal of Accounting and Economics 25: 133-168.

Foster, George. 1977. Quarterly Accounting Data: Time-Series Properties and Predictive Ability Results. The Accounting review: 1-21.

Hill, Tim, Marcus O’ Connor and William Remus. 1996. Neural Network Models for Time Series Forecasts. Management Science: 1082-1092.

Lai, Syouching. 1998. The Prediction of Material Dilution Effect from Potentially Dilutive Securities on EPS. Journal of National Cheng Kung University. Vol.33.

Lawrence, Kryzanowski, Michael Galler and David W. Wright. 1993. Using Artificial Neural Networks to Pick Stocks. Financial Analysts Journal: 21-27.

Leigh, William, Russell Purvis and James M. Ragusa. 2002. Forecasting the NYSE composite index with technical analysis, pattern recognizer, neural network, and genetic algorithm: a case study in romantic decision support. Decision Support Systems 32: 361-377.

Li, Hing-Chih. 1991. The Interrelationship between Domestic and External Markets Using Eurodollar Futures and Treasure Bill Futures. Graduate Institute of Finance, Southern Illinois University.

Liu, Bo-Xuan. 1998. The Relationship between Fundamental Analysis and Earnings Forecast. Graduate Institute of Accounting, National Taiwan University.

Lobo, Gerald J. and R.D. Nair. 1990. Combining Judgmental and Statistical Forecasts: An Application to Earnings Forecasts. Decision Sciences: 446-460.

Moutinho, Hurley, S. and N.M. Stephens. 1995. Solving marketing optimization problems using genetic algorithms. European Journal of Marketing. 39-56.

Niculescu, Stefan P.. 2003. Artificial neural networks and genetic algorithms in QSAR. Journal of Molecular Structure 622: 71-83.

SAS/ETS User’s Guide. Version 5 Edition.

Slavin, Nathan and J.K.Yun. 2001. Earnings per share: A Review of the New accounting Standard. The Journal of Corporate Accounting & Finance: 57-71.

Tsai, Yuh-Ching. 1994. An Empirical Investigation of the Association between Financial Ratios and Earnings Per Share. Graduate Institute of Accounting, National Taiwan University.

Yu, Wen-Chang. EPS Forecast--Using the Neuro Network. Graduate Institute of Financial Management, National Sun Yat-Sen University.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 簡茂發(1978)。父母教養態度與兒童生活適應之關係。師大教育心理學報,11。
2. 蔡順良(1985)。家庭社經地位、父母管教態度與學校環境對國中生自我肯定及生活適應之影響研究。教育心理學報,18,239-263。
3. 楊國樞、柯永河、李本華(1973)。國中學生的心理特質與學業成就。中央研究院民族學研究所集刊,35,41-86。
4. 吳武典、陳秀蓉(1978)。教師領導行為與學生期待、學業成就與生活適應。師大教育心理學報,11,87-104。
5. 廖偉秀(1986)。國中前段班與後段班學生生活適應問題之調查及分析。教育文粹,15,174-190。
6. 詹馨(1984)。適應的性質初探。國教世紀,2。
7. 楊極東(1973)。回國升學僑生在國內大學的生活適應研究。輔導月刊,11(7-8),2-16。
8. 楊國樞(1998)。心理學研究的本土契合性及其相關問題。本土心理學研究,8,61-103。
9. 黃堅厚(1979)。國小及國中學生內外控信念之研究。國立台灣師範大學教育心理學報,12,1-14。
10. 黃堅厚(1979)。國小及國中學生內外控信念之研究。師大教育心理學報,12,1-14。
11. 陳慶福、林美紀(1996)。學習與讀書策略、自我概念和內外控對學業成就之影響。美和專校學報,14,107-118。
12. 陳淑美(1985)。國中學生的場地獨立性與性向、職業興趣及生活適應之關係。師大教育心理學報,18,149-168。
13. 陳小娥、蘇建文(1977)。父母教養行為與少年生活適應。國立台灣師範大學教育心理學系,教育心理學報,10,91-106。
14. 郭生玉(1975)。父母期望水準不切實際時對子女成就動機之影響。國立台灣師範大學教育心理學報,8,61-80。
15. 許錫珍、蘇見文、邱連煌(1979)。兒童制握信念與父母制握信念以及社經水準的關係。測驗年刊,26,37-46。