跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/11/21 05:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:莊逸彰
研究生(外文):Yi Chang Chuang
論文名稱:聚偏二氟乙烯/聚醋酸乙烯酯摻合體為基材之奈米複合材料製備與性質探討
論文名稱(外文):Preparation and Characterization of PVDF/PVAc Blend-based Nanocomposites
指導教授:邱方遒
指導教授(外文):F. C. Chiu
學位類別:碩士
校院名稱:長庚大學
系所名稱:化工與材料工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
論文頁數:108
中文關鍵詞:聚偏二氟乙烯聚醋酸乙烯酯石墨烯多壁奈米碳管高分子摻合體奈米複合材料
外文關鍵詞:PVDFPVAcGrapheneMulti-walled carbon nanotubesPolymer blendsNanocomposites
相關次數:
  • 被引用被引用:0
  • 點閱點閱:230
  • 評分評分:
  • 下載下載:22
  • 收藏至我的研究室書目清單書目收藏:1
指導教授推薦書
口試委員審定書
致謝 iii
摘要 iv
Abstract v
目錄 vi
圖目錄 ix
表目錄 xiv
第一章 緒論 - 1 -
第二章 文獻回顧 - 3 -
2.1 聚偏二氟乙烯 (PVDF) - 3 -
2.2 聚醋酸乙烯酯 (PVAc) - 6 -
2.3 奈米填充劑 (Nano filler) - 6 -
2.4 PVDF 與 PVAc摻合體 - 11 -
2.5 PVDF與其相容性摻合體為基材之奈米複合材料 - 12 -
第三章 實驗 - 16 -
3.1 材料 - 16 -
3.2 儀器設備 - 17 -
3.3 實驗流程 - 20 -
3.4 樣品製備 - 21 -
3.5 性質分析 - 23 -
3.5-1 熱重損失分析儀 (TGA) - 23 -
3.5-2 微差掃描熱卡計 (DSC) - 23 -
3.5-3 偏光顯微鏡 (PLM) - 24 -
3.5-4 掃描式電子顯微鏡 (SEM) - 24 -
3.5-5 廣角X-ray 繞射儀 (WAXD) - 25 -
3.5-6 動態機械分析儀 (DMA) - 25 -
3.5-7 四點探針電阻係數測試儀 (Resistance Meter) - 25 -
3.5-8 流變儀 (Rheometer) - 26 -
3.5-9 拉伸測試 (Tensile Tester) - 26 -
3.5-10 傅立葉轉換紅外線光譜儀 (FTIR) - 26 -
第四章 結果與討論 - 27 -
4.1 奈米複合材料相形態 - 27 -
4.2 晶體結構 - 43 -
4.3 熱穩定性 - 48 -
4.4 結晶行為 - 54 -
4.5 熔融行為 - 70 -
4.6 機械性質 - 78 -
4.7 導電性 - 86 -
第五章 結論 - 89 -
參考文獻 - 90 -

圖目錄
Fig. 2-1 Model of SWCNTs and MWCNTs.[9] - 10 -
Fig. 2-2 Molecular models of SWCNTs (a) armchair, (b) zigzag, and (c) chiral conformation.[10] - 10 -
Fig. 4-1-1 Dispersion tests in DMF of GNP and CNT stayed in : (a) 0 h, (b) 2 h, (c) 4 h. - 28 -
Fig. 4-1-2 Dispersion tests in DMF of GNP and CNT after ultrasonicated and stayed in : (d) 0 h, (e) 24 h, (f) 48 h. - 28 -
Fig. 4-1-3 LM images (200x) of (a) F3Ac1, (b) GNP 0.3 phr, (c) GNP 0.6 phr, (d) GNP 1.0 phr, (e) GNP 1.5 phr, (f) GNP 2.0 phr at 200℃- 30 -
Fig. 4-1-4 LM images (500x) of (a) F3Ac1, (b) GNP 0.3 phr, (c) GNP 0.6 phr, (d) GNP 1.0 phr, (e) GNP 1.5 phr, (f) GNP 2.0 phr at 200℃- 31 -
Fig. 4-1-5 PLM images (200x) of (a) F3Ac1, (b) GNP 0.3 phr, (c) GNP0.6 phr, (d) GNP 1.0 phr, (e) GNP 1.5 phr, (f) GNP 2.0 phr after 5 ℃ cooled. - 32 -
Fig. 4-1-6 PLM images (500x) of (a) F3Ac1, (b) GNP 0.3 phr, (c) GNP 0.6 phr, (d) GNP 1.0 phr, (e) GNP 1.5 phr, (f) GNP 2.0 phr after 5℃cooled. - 33 -
Fig. 4-1-7 LM images (200x) of (a) F3Ac1, (b) CNT 0.3 phr, (c) CNT 0.6 phr, (d) CNT 1.0 phr, (e) CNT 1.5 phr,(f) CNT 2.0 phr at 200℃- 34 -
Fig. 4-1-8 LM images (500x) of (a) F3Ac1, (b) CNT 0.3 phr, (c) CNT 0.6 phr, (d) CNT 1.0 phr, (e) CNT 1.5 phr, (f) CNT 2.0 phr at 200℃- 35 -
Fig. 4-1-9 PLM images (200x) of (a) F3Ac1, (b) CNT 0.3 phr, (c) CNT 0.6 phr, (d) CNT 1.0 phr, (e) CNT 1.5 phr, (f) CNT 2.0 phr after 5℃ cooled. - 36 -
Fig. 4-1-10 PLM images (500x) of (a) F3Ac1, (b) CNT 0.3 phr, (c) CNT 0.6 phr, (d) CNT 1.0 phr, (e) CNT 1.5 phr, (f) CNT 2.0 phr after 5℃ cooled. - 37 -
Fig. 4-1-11 SEM images (1000x) of (a) F3Ac1, (b) GNP 0.3 phr, (c) GNP 0.6 phr, (d) GNP 1.0 phr, (e) GNP 1.5 phr, (f) GNP 2.0 phr. - 39 -
Fig. 4-1-12 SEM images (3000x) of (a) F3Ac1, (b) GNP 0.3 phr, (c) GNP 0.6 phr, (d) GNP 1.0 phr, (e) GNP 1.5 phr, (f) GNP 2.0 phr. - 40 -
Fig. 4-1-13 SEM images (1000x) of (a) F3Ac1, (b) CNT 0.3 phr, (c) CNT 0.6 phr, (d) CNT 1.0 phr, (e) CNT 1.5 phr, (f) CNT 2.0 phr. - 41 -
Fig. 4-1-14 SEM images (3000x) of (a) F3Ac1, (b) CNT 0.3 phr, (c) CNT 0.6 phr, (d) CNT 1.0 phr, (e) CNT 1.5 phr, (f) CNT 2.0 phr. - 42 -
Fig. 4-2-1 XRD patterns in (a) 5 ℃/min cooled and (b) air quench. - 44 -
Fig. 4-2-2 XRD patterns in (a) GNP nanocomposites and (b) CNT nanocomposites after 5 ℃ cooled. - 45 -
Fig. 4-2-3 FTIR spectra of PVDF, F3Ac1, GNP and CNT nanocomposites after 5 ℃ cooled - 47 -
Fig. 4-3-1 TGA analysis of GNP nanocomposites in (a) N2 and (b) air condition - 51 -
Fig. 4-3-2 TGA analysis of CNT nanocomposites in (a) N2 and (b) air condition - 53 -
Fig. 4-4-1 DSC analysis about non-isothermal crystallized curves of the GNP nanocomposites at different cooled rates (a) 5 ℃/min and (b) 40 ℃/min. - 58 -
Fig. 4-4-2 DSC analysis about non-isothermal crystallized curves of the CNT nanocomposites at different cooled rates (a) 5 ℃/min and (b) 40 ℃/min - 60 -
Fig. 4-4-3 DSC isothermal crystallized curves at different Tc for (a) PVDF, (b) F3Ac1, (c) GNP 0.3 phr, (d) GNP 0.6 phr, (e) GNP 1.0 phr, (f) GNP 1.5 phr. - 63 -
Fig. 4-4-4 DSC isothermal crystallized curves at different Tc for (g) CNT 0.3 phr, (h) CNT 0.6 phr, (i) CNT 1.0 phr, (j) CNT 1.5 phr. - 64 -
Fig. 4-4-5 tp-1 vs. Tc for different samples (a) GNP nanocomposities (b) CNT nanocomposities. - 65 -
Fig. 4-4-6 Relative of crystallinity vs. time for different samples (a) PVDF, (b) F3Ac1, (c) GNP 0.3 phr, (d) GNP 0.6 phr, (e) GNP 1.0 phr, (f) GNP 1.5 phr................................................................................. - 66 -
Fig. 4-4-7 Relative of crystallinity vs. time for different samples (g) CNT 0.3 phr, (h) CNT 0.6 phr, (i) CNT 1.0 phr, (j) CNT 1.5 phr. - 67 -
Fig. 4-4-8 Avrami plot of different samples (a) PVDF, (b) F3Ac1, (c) GNP 0.3 phr, (d) GNP 0.6 phr, (e) GNP 1.0 phr, (f) GNP 1.5 phr. - 68 -
Fig. 4-4-9 Avrami plot of different samples (g) CNT 0.3 phr, (h) CNT 0.6 phr, (i) CNT 1.0 phr, (j) CNT 1.5 phr. - 69 -
Fig. 4-5-1 DSC analysis about non-isothermal heated curves of the GNP nanocomposites after different cooled rates (a) 5 ℃/min and (b) 40 ℃/min. - 73 -
Fig. 4-5-2 DSC analysis about non-isothermal heated curves of the CNT nanocomposites after different cooled rates (a) 5 ℃/min and (b) 40 ℃/min. - 74 -
Fig. 4-5-3 DSC heating curves of isothermally crystallized samples (a) PVDF, (b) F3Ac1, (c) GNP 0.3 phr, (d) GNP 0.6 phr, (e) GNP 1.0 phr, (f) GNP 1.5 phr. - 75 -
Fig. 4-5-4 DSC heating curves of isothermally crystallized samples (g) CNT 0.3 phr, (h) CNT 0.6 phr, (i) CNT 1.0 phr, (j) CNT 1.5 phr.- 76 -
Fig. 4-5-5 DSC heating curves of isothermally crystallized samples at 144 ℃ (a) GNP nanocomposites, (b) CNT nanocomposites. - 77 -
Fig. 4-6-1 Storage modulus versus Temperature of GNP and CNT nanocomposites. - 79 -
Fig. 4-6-2 Tan δ versus Temperature of GNP and CNT nanocomposites. - 79 -
Fig. 4-6-3 Young's modulus of F3Ac1、GNP and CNT nanocomposites. - 82 -
Fig. 4-6-4 Elongation of PVDF、F3Ac1、GNP and CNT nanocomposites. - 82 -
Fig. 4-6-5 Storage modulus versus Angular frequency of (a) GNP and (b) CNT nanocomposites. - 84 -
Fig. 4-6-6 Complex viscosity versus Angular frequency of (a) GNP and (b) CNT nanocomposites. - 85 -
Fig. 4-7 Resistivity versus Content of GNP and CNT nanocomposites . - 87 -

表目錄
Table. 3-1 Sample Codes - 22 -
Table. 4-1 TGA data of GNP nanocomposites in N2 - 50 -
Table. 4-2 TGA data of GNP nanocomposites in air - 50 -
Table. 4-3 TGA data of CNT nanocomposites in N2 - 52 -
Table. 4-4 TGA data of CNT nanocomposites in air - 52 -
Table. 4-5 DSC data of non-isothermal crystallized nanocomposites - 57 -
Table. 4-6 DSC data of non-isothermal crystallized nanocomposites - 57 -
Table. 4-7 DSC data of non-isothermal crystallized nanocomposites - 59 -
Table. 4-8 DSC data of non-isothermal crystallized nanocomposites - 59 -
Table. 4-9 Avrami analysis data of isothermal crystallized samples - 61 -
Table. 4-10 Avrami analysis data of isothermal crystallized samples - 62 -
Table. 4-11 DSC data of non-isothermal crystallized of GNP nanocomposites - 72 -
Table. 4-12 DSC data of non-isothermal crystallized of CNT nanocomposites - 72 -
Table. 4-13 Tensile test data of PVDF、F3Ac1、GNP and CNT nanocomposites - 81 -
Table. 4-14 Electrical resistivity data of GNP and CNT nanocomposites - 88 -


[1] G. D. Kang and Y. M. Cao, "Application and modification of poly(vinylidene fluoride) (PVDF) membranes - A review, "Journal of Membrane Science, vol. 463, pp. 145-165, 2014.
[2] A. J. Lovinger, "Annealing of Poly(viny1idene fluoride) and Formation of a Fifth Phase, "Macromolecules, vol. 15, pp. 40-44, 1982.
[3] A. K. Gein and K. S. Novoselov, "The rise of graphene," Nature Materials, vol. 6, pp. 183-191, 2007.
[4] A. I. Rusanov, "Thermodynamics of graphene," Surface Science Reports, vol. 69, pp. 296-324, 2014.
[5] M. El. Achaby, F. Z. Arrakhiz, S. Vaudreuil, E. M. Essassi, A. Qaiss, and M. Bousmina, "Preparation and Characterization of Melt-Blended Graphene Nanosheets-Poly(vinylidene fluoride) Nanocomposites with Enhanced Properties," Journal of Applied Polymer Science, vol. 127, pp. 4697-4707, 2013.
[6] S. Iijima, "Helical microtubules of graphitic carbon," Nature, vol.354, pp. 56-58, 1991.
[7] M. Moniruzzaman and K. I. Winey, "Polymer Nanocomposites Containing Carbon Nanotubes," Macromolecules, vol. 39, pp.5194-5205, 2006.
[8] T. Uchida and S. Kumar, "Single Wall Carbon Nanotube Dispersion and Exfoliationin Polymers," Journal of Applied Polymer Science, vol. 98, pp.985-989, 2005.
[9] B. Gauri, "Nanotherapeutics Magic Bullets- a Boon or Bane to Human Health," Journal of Nanomedicine &; Nanotechnology, vol. 3, pp.1-9, 2012.
[10] G. Mittal, V. Dhand, K. Y. Rhee, S. J. Park and W. R. Lee, "A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites," Journal of Industrial and Engineering Chemistry, vol. 21, pp.11-25, 2015.
[11] H. J. Chiu, "Spherulitic Morphology and Crystallization Kinetics of Poly(vinylidene fluoride)/Poly(vinyl acetate) Blends," Journal of Polymer Research, vol. 9, pp.169-174, 2002.
[12] Y. C. Li, S.C. Tjong and R.K.Y. Li, "Electrical conductivity and dielectric response of poly(vinylidene fluoride)–graphite nanoplatelet composites," Synthetic Metals, vol. 160, pp.1912-1919, 2010.
[13] J. Shang, Y. Zhang, L. Yu, B. Shen, F. Lv and P. K. Chiu, "Fabrication and dielectric properties of oriented polyvinylidene fluoride nanocomposites incorporated with graphene nanosheets," Materials Chemistry and Physics, vol. 134, pp. 867-874, 2012.
[14] K. Ke, Y. Wang, W. Yang, B. H. Xie and M. B. Yang, "Crystallization and reinforcement of poly (vinylidene fluoride) nanocomposites: Role of high molecular weight resin and carbon nanotubes," Polymer Testing, vol. 31, pp. 117-126, 2012.
[15] R. Ram, M. Rahaman and D. Khastgir, "Electrical properties of polyvinylidene fluoride (PVDF)/multi-walled carbon nanotube (MWCNT) semi-transparent composites: Modelling of DC conductivity," Composites: Part A, vol. 69, pp. 30-39, 2015.
[16] F.C. Chiu and Y. J. Chen, "Evaluation of thermal, mechanical, and electrical properties of PVDF/GNP binary and PVDF/PMMA/GNP ternary nanocomposites," Composites: Part A, vol. 68, pp. 62-71, 2015.
[17] Z. Jin, K. P. Pramoda, S. H. Goh and G. Xu, "Poly(vinylidene fluoride)-assisted melt-blending of multi-walled carbon nanotube/poly(methyl methacrylate) composites," Materials Research Bulletin, vol. 37, pp. 271-278, 2002.
[18] W. Ma, J. Zhang, X. Wang and S. Wang, "Effect of PMMA on crystallization behavior and hydrophilicity of poly(vinylidene fluoride)/poly(methyl methacrylate) blend prepared in semi-dilute solutions," Applied Surface Science, vol. 253, pp. 8377-8388, 2007.
[19] X. Zhao, S. Chen, J. Zhang, W. Zhang and X. Wang, "Crystallization of PVDF in the PVDF/PMMA blends precipitated from their non-solvents: Special ‘‘orientation’’ behavior, morphology, and thermal properties," Journal of Crystal Growth, vol. 328, pp.74-80, 2011.
[20] C. Feng, T. Huang, H. M. Chen, J. H. Yang, N. Zhang, Y. Wang, C. L. Zhang and Z. W. Zhou, "Carbon nanotubes induced poly(vinylidene fluoride) crystallization from a miscible poly(vinylidene fluoride)/poly(methyl methacrylate) blend," Colloid Polymer Science, vol. 292, pp. 3279-3290, 2014.
[21] B.Mohammadi, A. A. Yousefi and S. M. Bellah, "Effect of tensile strain rate and elongation on crystalline structure and piezoelectric properties of PVDF thin films," Polymer testing, vol. 26, pp. 42-50, 2007.
[22] F. C. Chiu and S. C. Yeh, "Comparison of PVDF/MWNT, PMMA/MWNT, and PVDF/PMMA/MWNT nanocomposites: MWNT dispersibility and thermal and rheological properties," Polymer Testing, vol. 45, pp. 114-123, 2015.
[23] N. T. Hassankiadeh, Z. Cui, J. H. Kim, D. W. Shin, A. Sanguineti, V. Arcella, Y. M. Lee and E. Drioli, "PVDF hollow fiber membranes prepared from green diluent via thermally induced phase separation :Effect of PVDF molecular weight," Journal of Membrane Science, vol. 471, pp. 237-246, 2014.
[24] F. C. Chiu, " Comparisons of phase morphology and physical properties of PVDF nanocomposites filled with organoclay and/or multi-walled carbon nanotubes," Materials Chemistry and Physics, vol. 143, pp. 681-692, 2014.
[25] F. C. Chiu, C. C. Chang and Y. J. Chen, "Binary and ternary nanocomposites based on PVDF, PMMA, and PVDF/PMMA blends: polymorphism, thermal, and rheological properties," Journal of Polymer Research, vol. 21, article: 378, 2014.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊