跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.35) 您好!臺灣時間:2025/12/18 02:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張瀚文
研究生(外文):Han-Wen Chang
論文名稱:奈米級及次微米級核殼型橡膠添加劑、無機矽膠/有機高分子核殼型顆粒、及蒙特納石黏土對不飽和聚酯、乙烯基酯、及環氧樹脂之微觀型態結構、体積收縮、內部可染色性及機械性質之影響研究
論文名稱(外文):Effects of nano-scale and submicron-scale core-shell rubber additives, inorganic silica gel/organic polymer core-shell particle, and montmorillonite clay on the cured sample morphology, volume shrinkage, internal pigmentability ,and mechanical properties
指導教授:黃延吉
指導教授(外文):Yan-Jyi Huang
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:化學工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:324
中文關鍵詞:環氧樹脂不飽和聚脂核殼型橡膠乙烯基酯樹脂環動半徑體積收縮內部可染色
外文關鍵詞:volume shrinkagemontmorillonite (MMT)core-shell rubber(CSR)internal pigmentabilityunsaturated polyester(UP)vinyl ester resin (VER)radius of gyration
相關次數:
  • 被引用被引用:0
  • 點閱點閱:1112
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文之目的,乃探討三種特用添加劑,分別為:(1)奈米級及次微米級核殼型橡膠(core-shell rubber)添加劑(2)無機矽膠/有機高分子核殼型顆粒及(3)矽烷改質蒙特納石黏土(montmorillonite clay,MMT),其對苯乙烯/不飽和聚脂(或乙烯基酯)/特用添加劑三成份系統及環氧樹脂/硬化劑/特用添加劑三成份系統之之微觀型態結構、抗體積收縮特性及內部可染色性、機械性質等之影響。實驗之結果,吾人將配合苯乙烯/乙烯基脂樹脂/特用添加劑三成份系統在未反應前之相容性,x光散射分析、固化樣品之微觀結構、聚合固化後之反應轉化率及微孔洞體積分率等因素之整合性實驗測量結果加以解釋。

吾人也利用小角度X-ray散射儀(SAXS)測量不飽和聚酯(UP)及乙烯基酯(VER)之稀薄苯乙烯(St)溶液之散射強度,再根據Guinier Law計算不同UP及乙烯基酯(VER)之環動半徑(Radius of Gyration),而針對於St/VER/MMT三成份系統,為瞭解UP分子擴散至蒙特納石黏土(MMT)層間之難易程度。
The effects of two additives, including (1) nano- scale and submicron-scale core-shell rubber additive,(2) inorganic silica gel/organic polymer core-shell particle, and (3) montmorillonite clay, on the cured sample morphology, volume shrinkage characteristics and internal pigmentability, mechanical properties of the styrene(St)/ Vinyl ester resin (VER)/ additives ternary systems and Epoxy/curing agent /additive ternary systems after the cure have been investigated. The experimental results have been explained by integrated measurements combining phase characteristic of the St/VER/additive ternary system and Epoxy/curing agent /additive ternary systems before the cure, XRD analysis , cured sample morphology, final cure conversion, and volume fraction of microvoid generated during the cure by using DSC , SAXS , WAXS , SEM , TEM , OM and image analysis.
Also the scattering intensity of vinyl ester resin (VER) and unsaturated polyester (UP) with different structure in dilute styrene solution was measured by the method of small angle X-ray scattering (SAXS), and the radius of gyration of VER and the UP molecule can then be calculated by using the Guinier law.
中文摘要……………………………………………………………….I
英文摘要……………………………………………………………….II
誌謝…………………………………………………………………….III
圖目錄………………………………………………………………….XI
表目錄…………….……………………………………………… XXXII
第一章 緒論
1-1 不飽和聚酯(UP)…………………………………………………1
1-2 乙烯基酯樹脂(Vinyl Ester Resin , VER)………………………..2
1-3 增韌劑……………………………………………………………3
1-4 抗收縮劑…………………………………………………………4
1-5 內部可染色性……………………………………………………5
1-6 蒙特納石黏土(Montmorillonite, MMT)及其高分子奈米複合材料…………………………………………………………………6
1-7 研究範疇………………………………………………………….7
第二章 文獻回顧
2-1 自由基聚合反應…………………………………………………9
2-2 不飽和聚酯(UP)樹脂之合成 …………………………………12
2-3 不飽和聚酯(UP)樹脂與苯乙烯(ST)之交聯共聚合反應……...13
2-4 苯乙烯(St) /不飽和聚酯(UP) /抗收縮劑(LPA)三成份系統之相溶性…………………………………………………………… 16
2-5 低收縮不飽和聚酯樹脂之抗收縮補償機構………………….17
2-6 低收縮不飽和聚酯樹脂系統聚合固化後微觀結構之研究….19
2-7 抗收縮劑對UP樹脂固化後體積收縮影響之研究…………..21
2-8 抗收縮劑對UP樹脂固化後內部染色性影響之研究………..23
2-9 不飽和聚酯硬化後的機械性質研究………………………….24
2-10 核殼性橡膠增韌劑…………………………………………….26
2-11 蒙特納石黏土(奈米級黏土)-不飽和聚酯高分子奈米複合材料研究………………………………………………………………29
2-12 高分子稀薄溶液之環動半徑研究…………………………….33
第三章 實驗方法及設備
3-1原料………………………………………………………………37
3-1-1 不飽和聚酯樹脂………………………………………….37

3-1-2 Core Shell Rubber (CSR)………………………………….39

3-1-3 MMT……………………………………………………….41

3-1-4 St/UP/特用添加劑三成份試片的原料……………………42
3-2 實驗儀器…………………………………………………………43
3-3 實驗步驟…………………………………………………………47
3-3-1 St/UP/CSR三成份系統機械試片……………………….47
3-3-2 St/UP/silane-treated MMT三成份系統…………………48
3-3-3 三成份溶液製備及體積變化量測(高溫110oC反應系統)
…………………………………………………………...49
3-3-4 體積變化量測-密度法…………………………………...50
3-3-5 內部可染色性之量測……………………………………50
3-3-6 光學顯微鏡及影像分析-微孔洞體積分率……………...51
3-3-7 SEM觀測樣品之製備…………………………………...51
3-3-8 TEM觀測樣品之製備…………………………………...52
3-3-9 拉伸測試(Tension Test)………………………………….53
3-3-10 破壞韌性(Fracture toughness)…………………………...55
3-3-11耐衝擊測試(Impact Test)…………………………………56
3-3-12波松比測試(Poisson’s ratio)……………………………...57
3-3-13破壞能量(Fracture energy)……………………………….57
3-3-14 利用XRD測定St/UP/silane-treated MMT三成份系統之MMT層間距離及材料內部結構……………………….58
3-3-15 利用SAXS測定不飽和聚酯之環動半徑……………....59
3-3-16 絕對X光散射強度之校正………………………………61
3-4 小角度X-ray散射(SAXS)之相關理論………………………….67
3-4-1 X-ray簡介………………………………………………...67
3-4-2 X光的產生………………………………………………..67
3-4-3 X光與中子散射…………………………………………..70
3-4-4 SAXS測定高分子稀薄溶液以求算高分子環動半徑之
理論………………………………………………………...71
3-4-4-1 Guinier Law………………………………………………..71
3-4-4-2 Zimm、Flory 和Bueche光散射法………………………73
3-4-4-3 Zimm Plot………………………………………………….75
3-4-5 聚苯乙烯標準樣品在環己烷溶劑中的環動半徑………..76
3-4-6 以穿透因子(transmission factor)校正X光散射強度及溶劑背景散射強度之消除…………………………………….77
第四章 結果與討論
4-1 小角度X光散射法(SAXS)測定高分子的環動半徑Rg................80
4-1-1 不飽和聚脂在苯乙烯溶劑中的環動半徑(Rg)……………..84
4-2 St/UP(or VER) / additive 三成份系統未反應前之相溶性……...125
4-2-1添加核殼橡膠CSR之三成份系統………………………..125
4-2-2 添加Silane-treated MMT之三成份系統…………………127
4-3 SEM微觀型態結構……………………………………………….129
4-4 TEM 微觀型態結構……………………………………………...174
4-5 Takayanagi機械模式……………………………………………...226
4-6體積收縮特性……………………………………………………..227
4-7 OM微觀型態結構及相對微孔洞體積分率……………………..234
4-8內部可染色性……………………………………………………..266
第五章 結果與討論…………………………………………………..341
第六章 參考文獻……………………………………………………..344
1.1. R.B. Burn,Polyester Molding Compounds,Marcel Dekker,Inc, New York, (1982).
2.B.Ellis,Chemistry and Technology of Epoxy Resin,Blackle Academic and Professional
3.陳東課,環氧樹脂在積層板之應用,化工技術第四卷第五期(1996)
4.賴耿陽,環氧樹脂應用實務,復漢出版社,台灣(1999)
5.賴家聲 環氧樹脂與硬化劑(上) ,復漢出版社,台灣(1999)
6.S. V. Levchik, G. Camino, M. P. Luda, L. Costa, G. Muller, B. Costes, Polym. Deg. Stab., 60, 169 (1998)
7.黃滄閔,碩士論文,成功大學,(2001)
8.R.E. Young, in “Unsaturated Polyester Technology,“ ed. P.F. Bruins, Gordon and Breach Science Publishers, New York,( 1976).
9.M.E. Kelly, in “Unsaturated P Polyester Technology,“ ed. P.F. Bruins, Gordon and Breach Science Publishers, New York, (1976), p.370.
10.F. Fekete, in “Unsaturated Polyester Technology,“ ed. P.F. Bruins, Gordon and Breach Science Publishers, New York, (1976), p.28.
11.E. Martuscelli, P. Musto, G.. Ragosta, G. Scarinzi, and E. Bertotti,
J.Polym.Sci., Part B:Polym.Phys.,31,619(1993).
12.S.B. Pandit, and V.M. Nadkarni, Ind. Eng. Chem. Res.,33,2778(1994).
13.The B.F. Goodrich Co., WO93/21274(Oct. 28,1993).
14.Crc for Polymers Pty. Ltd., WO97/43339(Nov. 20,1997).
15.吳嘉鴻,碩士論文,台灣科技大學,(2003).
16.黃俊翰,碩士論文,台灣科技大學,(2009).
17.E.J. Bartkus and C.H Kroekel, Appl.Polym.Symp.,15, 113(1970).
18.K.E.Atkins,in”Sheet Molding Compound :Science and Technology”Ed., H.G. Kia, Hanser Publishers, New York,(1993), Ch4.
19.V.A. Pattison, R.R. Hindersinn and W.T. Schwartz,J. Appl.Polym.Sci., 18,2763(1974).
20.V.A. Pattison, R.R. Hindersinn and W.T. Schwartz,J. Appl.Polym.Sci., 19,3045(1975).
21.L. Suspene, D. Fourquier and Y. S. Yang,Polymer, 32,1593(1991).
22.Y. J. Huang,and C. M. Liang, Polymer, 37,401(1996).
23.W. Li, L. J. Lee,and K.H. Hsu, Polymer, 41,711(2000).
24.C.B. Bucknall, l.K. Partidge and M.J. Phillips, Polymer, 32,636(1991).
25.Y. J. Huang, T. S. Chen, J. G. Huang, and F. H. Lee, J. Appl. Polym.
Sci., 89, 3336(2003).
26.J.P. Dong , J.H. Lee , D.H. Laiand and Y. J. Huang , Appl. Polym.
Sci., 98, 264(2005).
27.C.P. Hsu, M. Kinkelaar, P. Hu and L.J. Lee. Polym.Eng.Sci.,31, 1450,(1991).
28.Y.J. Huang, C.J. Chu, and J.P. Dong, J. Appl. Polym. Sci., 78,543(2000).
29.J.P. Dong, J.G. Huang, F.H. Lee, J.W. Roan,and Y.J. Huang,J.Appl.
Polym.Sci.,91,3388(2004).
30.Y.J. Huang and C.C. Su,J.Appl Polym. Sci,55,323(1995).
31.Y.J. Huang and W.C. Jiang,Polymer,39,6631(1998).
32.K.E. Atkins and G.C. Rex. 48th Annual Conference, Composite Institute. SPI, Session 6-D (Feb, 8-11,1993).
33.K.E. Atkins and G.C. Rex. , C.G. Reid, R.L. Seats and R.C. Candy, 47th Annual Conference,Composite Institute. SPI, Session 7-D (Feb, 3-6,1992).
34.Y.J. Huang, T.S. Chen, J.G. Huang, and F.H. Lee,J.Appl. Polym. Sci., 89, 3336(2003).
35.B. M. Novak, Adv. Mater., 5, 422(1993).
36.X. Kornmann, L. A. Berghund, J. Sterte, and E. P. Giannelis,Polym. Eng. Sci., 38, 1351(1998).
37.Y. Kojima, A. Usuki, M. Kawasumi, A. Okada, T. Kurauchi, and
Kamigaito, J.Polym.Sci. Part A: Polym.Chem, 31,983,(1993).
38.E. P. Giannelis, Adv. Mater., 8, 29(1996).
39.A. Usuki, Y. Kojima, M. Kawasumi, A. Okada, A. Fujushima, T. Kurauchi, and O. Kamigaito, J. Mater. Res. 8, 1179(1993).
40.P. B. Messersmith and E. P. Giannelis, Chem. Mater., 6, 1719(1994).
41.W. Gilman and T. Kashiwagi, SAMPE Journal, 33, 42(1997).
42.R.J. Roe, “Methods of X-ray and Neutron Scattering in Polymer Science”, Oxford University Press, New York, 2000, Chapter 5.
43.盧天智,碩士論文,國立台灣科技大學,1991.
44.H.R. Allcock and F.W. Lampe.,”Contemporary Polymer Chemistry”, 2nd Ed., Prentice Hall, Englewood Cliffs, New Jersey, 1990, P.50.
45.Y.S. Yang and L.J. Lee,Polymer,29,1793(1988).
46.K. Horie,I. Mita,and H. Kambe,J.Polym.Sci.PartA-1:Polym. Chem.,7, 2561(1969).
47.江文慶,碩士論文,國立台灣科技大學,1996.
48.Y.J. Huang, and C.C. Su, J. Appl. Polym. Sci., 55,305(1995).
49.Y.J. Huang and J.C. Horng,Polymer,39,3683(1998).
50.Y.J. Huang and L.D. Chen,Polymer,39,7049(1998).
51.蘇進成,碩士論文,台灣科技大學,(1992).
52.林立翔,碩士論文,台灣科技大學,(1992).
53.K.E. Atkins, in “Polymer Blends” ed, D.R. Paul and S, Newman, Academic Press, New York, Vol.2 (1978).
54.Y.J. Huang and C.C. Su, Polymer,35,2397 (1994).
55.Y.J. Huang and T.J. Lu and W. Hwu, Polym. Eng. Sci.,33,1 (1993).
56.C.B. Bucknall, I.K. Partridge, and M.J. Phillips, Polymer, 32,786(1991).
57.T. Mitani, H. Shiraishi, K. Honda and G.E. Owen, 44th Annual Conference Composite Institute,SPI,Session 12-F (Feb. 6-9,1989).
58.W.D. Cook and O. Delatycki,J.Polym.Sci.,Polym.Phys.Ed.,12,2111 (1974).
59.W.D. Cook and O. Delatycki,J.Polym.Sci.,Polym.Phs.Ed.,12,1925,(1974).
60.Y.J. Huang, S.C. Lee,and J.P. Dong,J.Appl.Polym.Sci.,78,558(2000).
61.Y.J. Huang,T.S. Chen,J.G. Huang,andF.H. Lee,J.Appl.Polym.Sci.,89, 3347(2003).
62.D.S. Kim, K. Cho, J.H. An, and C.E. Park., J. Mater. Sci., 29, 1854 (1994).
63.J.S. Ullett, and R.P. Chartoff, Polym. Eng. Sci., 35, 1086(1995).
64.M. Abbate, E. Martuscelli, P. Musto, G. Ragosta, and G. Scarinzi, J.Appl. Polym. Sci., 58, 1825(1995).
65.M.L.L. Maspochand, and A.B. Matinez, Polym.Eng. Sci., 38, 290 (1998).
66.N. A. Miller and C. D. Stirling, Polym. Comps., 9, 31(2001).
67.K. F. Lin and Y.D. Shieh, J. Appl. Polym. Sci., 69, 2069(1998).
68.K.F. Lin and Y.D. Shieh, J. Appl. Polym. Sci., 70, 2313(1998).
69.P. Hazot, C. Pichot, and A. Maazouz, Macromol. Chem. Phys., 201,632(2000).
70.B.J.P. Jansen, S. Rastogi, H.E.H. Meijer, and P.J.Lemstra, Macromolecules, 34, 3998(2001).
71.H.J. Sue, E.I. Garciameitin, and D.M. Picklman, in ”Polymer Toughening, Ch. 5, ed., C.B. Arends, Marcel Dekker, New York,(1996).
72.The Dow Chemical Company, US Patent 4,778,851(Oct. 18 1998).
73.J.Y. Qian, R.A.Pearson, V.L. Dimonie, and M.S. El-Aasser, J. Appl. Polym. Sci.,58, 439(1995).
74.D. J. Suh, Y. T. Lim, and O. O. Park, Polymer, 41, 8557(2000).
75.R. K. Bharadwaj, A. R. Mehrabi, C. Hamilton, C. Trujillo, M. Murga, R. Fun, A. Chavira, and A. K. Thompsor, Polymer, 43, 3669(2002).
76.The Dow Chemical Company, US Patent 6, 287, 922 (Sep.11, 2001).
77.A. Al-khanabashi, M. El-Gamal, and A. Moet, J. Appl. Polym. Sci., 98, 767 (2005).
78.梁繼文,”礦物學(下)”,台北市,五南圖書 (1984).
79.T. Lan and T.J Dinnavaia, chem. Mater, 6, 2216 (1994).
80.J.Chiefare,Y.K.(Bill) Chong,F.Ercole,J.Krstina,J.Jeffery, T.P.T.Le, R.T.A.Mayadunne,G.F.Meijs,C.L.Moad,G.Moad,E.Rizzardo, and S.H.Thang,Macromolecules,31,5559(1998).
81.J. Chiefari, Y. K. Chong, F. Ercole, J. Krstina, J. Jefery, T. P. T. Le, R. T. A. Mayadunne, G. F. Meijs, C. L. Moad, G. Moad, E. Rizzardo, S. H. Thong, Macromolecules, 31, 5559 (1998).
82.P.Takolpuckdee, C. A.Mars, S.Perrier, Org. Lett., 7, 3449(2005).
83.Y.Tsujii, M.Ejaz, K.Sato, A.Goto, and T.Fukuda, Macromolecules , 34, 8872(2001).
84.D.L.Patton, and R.C.Advincula, Macromolecules, 39, 8674 (2006).
85.R.Narain, and S.P.Armes, Macromolecules,36,4675(2003).
86.M. H.Stenzel, T. P.Davis, and A. G.Fane, J Mater Chem, 13, 2090(2003).
87.K. Ishizu, K. I. Tsubaki and T. Ono, Polymer, 39, 2935(1998).
88.T. J. Prosa, B. J. Bauer, E. J. Amis, D. A. Tomalia, R. Scherrenberg, J. Polym. Sci. : Part B: Polymer Physics, 35, 2913 (1997).
89.T. Konishi, T. Yoshizaki, T. Saito, Y. Einaga, and H. Yamakawa, Macromolecules 1990,23, 290 (1990).
90.L.H. Sperling, “Introduction to Physical Polymer Science,” 3rd Ed. Wiley, New York, 2001, P.85~90.
91.M. Osa, T. Yoshizaki, and H. Yamakawa, Macromolecules 2000, 33, 4828.
92.謝宇軒,碩士論文,台灣科技大學,2009.
93.許廷宇,碩士論文,台灣科技大學,2009.
94.陳紹偉,碩士論文,台灣科技大學,2004.
95.S.Su and C.A. Wilkie, J. Polym. Sci.: Part A: Polym. Chem., 41, 1124(2003).
96.J.S. Trent, J.I. Scheinbeim, and P.R. Couchman, Macromolecules,16,589(1983)
97.P.W.K Lam, Polym. Eng. Sci., 29,609(1998)
98.C.B Bucknall ,I.K.Partirdge, and M.J Philleps, Polymer,32 ,786(1991)
99.N.G Mccrum, C.P Buckley, and C.B Bucknall, “Principles of Polymer Engineering,” Oxford University, New York, 19988,P.189
100.林武賢,碩士論文,台灣科技大學,2008.
101.J, Als-Nielsen and D. McMorrow, “Elements of Modern X-Ray
physics,” Wiley, New York (2001).
102.B.D Cullity, “Elements of X-ray diffraction.” 2nd Ed, Addison-wesley, Reading, MA, 1978.
103.L.H. Sperling, “Introduction to physical Polymer Science,” 3rd Ed, Wiley, New york, 2001, PP. 85-90.
104.郭庭蓁,碩士論文,台灣科技大學 2006.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 以X光散射分析苯乙烯/不飽和聚酯/蒙特納石黏土三成份系之結構特性及苯乙烯/不飽和聚酯/特用添加劑三成份系之機械性質研究
2. 石墨烯奈米層板之合成及探討無機二氧化矽/有機高分子核殼型顆粒、矽烷接枝之蒙特納石黏土、及石墨烯奈米層板對不飽和聚酯、乙烯基酯、及環氧樹脂之體積收縮、機械性質及微觀型態結構之影響
3. 以傳統乳化聚合法及RAFT活自由基乳化聚合法合成用於不飽和聚酯、乙烯基酯及環氧樹脂之奈米級及次微米級高分子核殼型橡膠及反應型微膠顆粒之抗收縮劑及增韌劑
4. 奈米級及次微米級核殼型橡膠添加劑、矽烷接枝之蒙特納石黏土及官能基化之脫層石墨烯奈米層板對不飽和聚酯及乙烯基酯樹脂之聚合固化反應動力、玻璃轉移溫度及X光散射特性之影響研究
5. 以傳統乳化聚合法及RAFT活自由基乳化聚合法合成用於不飽和聚酯、乙烯基酯及環氧樹脂之奈米級及次微米級高分子核殼型橡膠添加劑
6. 奈米級及次微米級核殼型橡膠、無機/有機混成核殼型顆粒、及蒙特納石黏土對不飽和聚酯、乙烯基酯、及環氧樹脂之聚合固化反應動力、玻璃轉移溫度、体積收縮、機械性質及微觀型態結構之影響
7. 矽烷接枝二氧化矽奈米顆粒及蒙特納石黏土對不飽和聚酯、乙烯基酯、及環氧樹脂之体積收縮、內部可染色性、機械性質及微觀型態結構之影響研究
8. 奈米級核殼型橡膠添加劑、無機二氧化矽/有機高分子核殼型顆粒、及蒙特納石黏土對不飽和聚酯、乙烯基酯、及環氧樹脂之聚合固化反應動力、玻璃轉移溫度、体積收縮、機械性質及微觀型態結構之影響研究
9. 奈米級及次微米級核殼型橡膠添加劑、無機矽膠/有機高分子核殼型顆粒及蒙特納石黏土對不飽和聚酯、乙烯基酯及環氧樹脂之聚合固化反應動力、玻璃轉移溫度、體積收縮、機械性質及微觀型態結構之影響研究
10. 以RAFT活自由基乳化聚合法合成用於不飽和聚酯、乙烯基酯及環氧樹脂之奈米級及次微米級之高分子核殼型添加劑
11. 奈米級及次微米級核殼型橡膠添加劑、無機二氧化矽/有機高分子核殼型顆粒、及蒙特納石黏土對不飽和聚酯、乙烯基酯、及環氧樹脂之聚合固化反應動力、玻璃轉移溫度、体積收縮及內部可染色性之影響研究
12. 奈米級及次微米級核殼型橡膠添加劑、無機矽膠/有機高分子核殼型顆粒、及蒙特納石黏土對不飽和聚酯、乙烯基酯及環氧樹脂之微觀型態結構、体積收縮、內部可染色性及機械性質之影響研究
13. 奈米級及次微米級核殼型橡膠添加劑、無機矽膠/有機高分子核殼型顆粒、及蒙特納石黏土對不飽和聚酯、乙烯基酯、及環氧樹脂之聚合固化反應動力及玻璃轉移溫度之影響研究
14. 以傳統乳化聚合法及RAFT活自由基乳化聚合法合成用於不飽和聚酯、乙烯基酯及環氧樹脂之奈米級及次微米級壓克力核殼型橡膠添加劑
15. 奈米級及次微米級核殼型橡膠添加劑及蒙特納石黏土對苯乙烯/乙烯基酯/特用添加劑三成份系之体積收縮、內部可染色性、機械性質及微觀型態結構之影響研究