跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/10 09:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:杜冠誼
論文名稱:二維cubic-k Dresselhaus-type電子系統中在圓盤附近的量子散射
論文名稱(外文):QUANTUM SCATTERING FROM A CIRCULAR DISK IN A CUBIC-K DRESSELHAUS-TYPE TWO DIMENSIONAL ELECTRON GAS
指導教授:朱仲夏
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子物理系所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:68
中文關鍵詞:自旋電子學Dresselhaus自旋軌道耦合量子散射自旋電流
外文關鍵詞:spintronicsDresselhaus spin-orbit couplingquantum sactteringspin current
相關次數:
  • 被引用被引用:0
  • 點閱點閱:207
  • 評分評分:
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
此論文的工作一直致力解讀在一個圓盤微結構附近,考慮Dresselhaus 型自
旋軌道耦合作用下自旋相關的散射效應。Dresselhaus 型自旋軌道耦合作用在這
裡主要包括了linear-k 相關以及cubic-k 相關的貢獻。
以分波方法為基礎,在散射區間內經計算後可以得到完整散射後的波函數。
透過調查入射電子平面波後,DSOI 造成空間辦別的散射效應,linear-k 與cubic-k
DSOI 貢獻的差異可以明顯地被辨識,同時得到所對應的能量耗散關係。在我們的發
現:對於linear-k Dresselhaus,電子自旋密度與機率密度分佈擁有空間對稱性
輪廓,與平面波入射角度無關。相反地,在cubic-k Dresselhaus SOI 例子中明顯
地表示出與平面波入射角度相關。
特別地,若入射平面波角度為幾個特定的角度,我們可以發現有相似的電子
自旋密度對應在cubic-k Dresselhaus 例子與linear-k Dresselhaus 例子之
間。
This thesis work has devoted to the study of spin-dependent scattering e®ects from a
circular-disk microscopic structure with Dresselhaus-type spin-orbit coupling. The Dres-
selhaus spin-orbit coupling considered here includes both contributions terms for one is
linear-k dependence and the other is cubic-k dependence.
Based on the method of partial waves, the complete scattering wave function in a
circular scattering region can be rigorously derived and obtained. Through investigating
their spatial-resolved scattering behaviors from linear and cubic Dresselhaus-type SOI
disk under the electron plane wave incidence, di®erent DSOI contributions can be appar-
ently discerned, and their corresponding detail energy dispersion relationships as well. In
our ‾ndings: for linear-k Dresselhaus case, the spin density and probability density distri-
butions own their spatial symmetry pro‾le, which is featured independence of the plane
wave incident angle. On the contrary, strong incident angle dependence is manifested for
the case of cubic-k Dresselhaus spin-orbit interaction.
In particular , for incidence plane wave in some characteristic angle, we can ‾nd similar
spin density responses between cubic-k Dresselhaus case and linear-k Dresselhaus case.
Abstract in Chinese i
Abstract in English ii
Acknowledgement iii
1 Introduction 1
1.1 Background : types of spin-orbit coupling system in solid state system . . 2
1.2 Motivation : cubic-k Dresselhaus spin-orbit interaction (SOI) . . . . . . . 3
1.3 A simple guide to thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Two dimensional Dresselhaus-type SOI electron system 5
2.1 Linear-k Dresselhaus SOI . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.1 Incident plane wave . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Cylindrical form representation of the eigenstates . . . . . . . . . . 12
2.2 Cubic-k Dresselhaus SOI . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.1 Incident plane wave . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.2 Cylindrical form representation of the eigenstates . . . . . . . . . . 17
2.3 Energy dispersion of Dresselhaus SOI system . . . . . . . . . . . . . . . . . 20
2.4 BIA in spin splitting in 2D systems . . . . . . . . . . . . . . . . . . . . . . 24
2.5 Connection between linear-k DSOI and ROSI systems . . . . . . . . . . . . 25
3 Scattering from a cylindrically symmetric potential in a Dresselhaus SOI
system 28
3.1 Cubic-k Dresselhaus SOI . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.1.1 Coupled cylindrical wave representations of the incoming wave . . . 29
3.1.2 Coupled cylindrical wave representations of the outgoing wave . . . 31
3.2 Linear-k Dresselhaus SOI . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2.1 Coupled cylindrical wave representations . . . . . . . . . . . . . . . 36
3.3 Scattering of the scattering state . . . . . . . . . . . . . . . . . . . . . . . 39
3.4 Spin density of the scattering state . . . . . . . . . . . . . . . . . . . . . . 39
3.5 Particle continuity equation . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4 Numerical results and discussions 44
4.1 Results for linear-k Dresselhaus SOI . . . . . . . . . . . . . . . . . . . . . 44
4.2 Results for cubic-k Dresselhaus SOI and more Discussions . . . . . . . . . 48
4.3 Discussion on the connection of spin density with the plane wave direction 49
5 Future work 50
A Simplify the boundary condition problem 51
B Derivation of spin density of the total wave function after scattering 55
C Comparison of analytical results and numerical approach for cylindrical
wave case 60
[1] M. I. Dyakonov, V. A. Marushchak, V. I. Perel, and A. N.Titkov, Sov. Phys. JETP.
63 655 (1986).
[2] Spin-Orbit Coupling in Two-Dimensional Electron and Hole systems, Roland Winkler
(Springer, 2003).
[3] E. I. Rashba, Fiz. Tverd. Tela (Leningrad) 2, 1224 (1960) [Sov. Phys. Solid State 2,
1109 (1960)]; Y. A. Bychkov and E. I. Rashba, J. Phys. C 17, 6039 (1984).
[4] G. Dresselhaus, Phys. Rev. 100, 580 (1955).
[5] B. A. Bernevig, J. Orenstein, and S.-C. Zhang, Phys. Rev. Lett. 97, 236601 (2006).
[6] M. Ohno and K. Yoh, Phys. Rev. B 77, 045323 (2008).
[7] R. G. Nazmitdinov, K. N. Pichugin, and M. Valn-Rodrguez, Phys. Rev. B 79, 193303
(2009).
[8] K. Y. Chen, C. S. Chu, and A. G. Malshukov , Phys. Rev. B 71, 121308 (2005).
[9] John Schliemann and Daniel Loss , Phys. Rev. B 76, 165311 (2003).
[10] A. O. Govorov, A. V. Kalameitsev, and J. P. Dulka, Phys. Rev. B 70, 245310 (2004).
[11] J. Cserti, A. Csords, and U. Zlicke, Phys. Rev. B 70, 233307 (2004).
[12] S. Datta and B. Das, Appl. Phys. Lett. 56, 665 (1990).
[13] R. G. Nazmitdinov, K. N. Pichugin, and M. Valn-Rodrguez, Phys. Rev. B 79, 193303
(2009).
[14] J. S. Sheng and Kai Chang Phys. Rev. B 74, 235315 (2006).
[15] Miao Wang and Kai Chang Phys. Rev. B 77, 125330 (2008).
[16] Ming-Che Chang , Phys. Rev. B 71, 085315 (2005).
[17] J. Schliemann, J. C. Egues, and D. Loss, Phys. Rev. Lett. 90, 146801 (2003).
[18] Jamie D. Walls, Jian Huang, Robert M. Westervelt,2,3 and Eric J. Heller, Phys. Rev.
B 71, 035325 (2006).
[19] J. E. Hirsch, Phys. Rev. Lett. 83, 1834 (1999).
[20] J. Wunderlich et al., Phys. Rev. Lett. 94, 047204 (2005).
[21] J. J. Krich and B. I. Halperin, Phys. Rev. Lett. 98, 226802 (2007).
[22] Y. Li, and R.Tao, Phys. Rev. B 75, 075319 (2007).
[23] Qing-feng Sun, and X. C. Xie, Phys. Rev. B 72, 245305 (2005).
[24] Junren Shi, Ping Zhang, Di Xiao, and Qian Niu, Phys. Rev. Lett. 96, 076604 (2006).
[25] S. K. Adhikari, Am. J. Phys. 54, 362 (1986).
[26] A. P¶alyi, C. P¶eterfalvi, and J. Cserti, Phys. Rev. B 74, 73305 (2006).
[27] A. P¶alyi, C. P¶eterfalvi, and J. Cserti, Phys. Rev. B 76, 035331 (2007).
[28] J. Y. Yeh, M. C. Chang, and C. Y. Mou, Phys. Rev. B 73, 35313 (2006).
[29] Modern Quantum Mechanics, Revised ed., J. J. Sakurai (Addison-Wesley, 1994).
[30] Mathematical Methods for Physicists, 4th ed., G. B. Arfkan and H. J. Weber (Aca-
demic Press, 1995).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top