跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.124) 您好!臺灣時間:2025/09/19 21:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉軒佑
研究生(外文):Xuan-You Liu
論文名稱:無人機群體智能於汙染源搜尋之模擬與建置
論文名稱(外文):Simulation of Swarm Intelligence in Pollution Sources Searching and Verification of Group Flight Formation
指導教授:李宗南李宗南引用關係
指導教授(外文):Chung-Nan Lee
學位類別:碩士
校院名稱:國立中山大學
系所名稱:資訊工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:61
中文關鍵詞:無人機消息隊列遙測傳輸邊緣運算群體智能空氣汙染
外文關鍵詞:DroneMQTTEdge ComputingSwarm IntelligenceAir Pollution
相關次數:
  • 被引用被引用:2
  • 點閱點閱:320
  • 評分評分:
  • 下載下載:22
  • 收藏至我的研究室書目清單書目收藏:1
本論文提出一套以無人飛機為主軸,將感測器加裝於無人機上,透過行動網路傳輸控制訊號的方式取代傳統的手持遙控器,遠距離控制無人機群飛行的系統,並且透過隊形的演算法,讓無人機能更有效率且有目地的執行任務,本論文針對不同任務特性需求,實作了兩種不同的隊形演算法,而無人機群之間的溝通主要是透過Message Queuing Telemetry Transport (MQTT) protocol此一通訊機制來完成彼此訊息的交換,達到群體智能(Swarm Intelligence)的目標。另外,搭載在無人機上的感測器也會即時的將感測數值回傳,在本地端能夠以即時視覺化圖表呈現,甚至於能夠讓無人機在返航回地面後,能夠將完整的資訊取出,進行資料的2D、3D視覺化呈現。最後,本論文提出一群體智能於汙染源搜尋的演算法,讓無人機能夠更快速的搜尋出汙染來源,經模擬器驗證本論文所提出的演算法能夠較現有的無人機汙染源搜尋演算法更符合經濟效益並且能更快速的找出汙染來源。
This thesis presents a group UAV navigation system for air pollution search. The system consists of a number of unmaned aerial vehicles equipped with air pollution sensors. The communication among the drones is through the Message Queuing Telemetry Transport (MQTT) protocol. In addition, the information collected by the sensors mounted on the drones will immediately be transmitted and presented visually on the control panel. Furthermore, an improved swarm intelligence algorithm for pollution source search is proposed to allow the drones to search for multiple pollution sources more efficient. Simulation results prove that the proposed algorithm can search multiple pollution sources more efficient than PSO.
論文審定書 i
摘要 ii
Abstract iii
目錄 iv
圖目錄 vi
第一章 簡介 1
1.1、 論文概述 2
1.2、 論文貢獻 3
1.3、 論文架構 4
第二章 文獻探討 6
2.1、 群體智能(Swarm Intelligence) 6
2.2、 超視距控制 9
2.3、 無人機的發展 11
2.4、 現有無人機應用於空汙感測之方式 12
2.5、 Message Queuing Telemetry Transport (MQTT) 16
2.6、 Web Real-Time Communication (WebRTC) 17
2.7、 Gaussian Plume Model 17
第三章 研究方法 20
3.1、 超視距控制無人機 21
3.2、 無人機群飛隊形控制 22
3.2.2、 雁行飛行模式 24
3.3、 運用群體智能演算法於模擬無人機群汙染源搜尋 25
3.4、 空汙數值視覺化 30
3.5、 基於WebRTC技術實現無人機影像串流 31
第四章 實作成果與分析 33
4.1、 系統功能 34
4.1.1、 使用者控制介面 34
4.1.2、 本論文架構下MQTT測試 35
4.2、 測試與分析 35
4.2.1、 超視距無人機控制 35
4.2.2、 兩隊形測試 36
4.2.3、 群體智能演算法模擬 39
4.2.4、 視覺化資料呈現 45
第五章 結論與未來工作 49
5.1、 結論 49
5.2、 未來工作 49
參考文獻 50
[1]Y. Hu, “Swarm Intelligence,” http://guava.physics.uiuc.edu/∼nigel/courses/569/
Essays_Fall2012/Files/Hu.pdf, 2018. Accessed: 2018-10-23.
[2]R. Gao, and J. Wu, “Dynamic Load Balancing Strategy for Cloud Computing with Ant Colony Optimization,” Future Internet 7, pp. 465-483, 2015.
[3]E. Luo, X.H. Fang, Y. Ng, and G. X. Gao, “Shinerbot: Bio-Inspired Collective Robot Swarm Navigation Platform,” Proceedings of the 29th International Technical Meeting of the Satellite Division of The Institute of Navigation, pp. 1091-1095, 2016.
[4]S. X. Fang, S. O’Young, and L. Rolland, “Development of Small UAS Beyond-Visual-Line-of-Sight (BVLOS) Flight Operation: System Requirements and Procedures,” System Requirements and Procedures. Drones: 2(18), pp. 13, 2018.
[5]L. R. Newcome, “Unmanned Aviation: A Brief History of Unmanned Aerial Vehicle,” (Library of Flight Series). Reston, VA: AIAA, 2004.
[6]C. H. Hugenholtz, B. J.Moorman, K. Riddell, and K. Whitehead, “Small Unmanned Aircraft Systems for Remote Sensing and Earth Science Research,” Eos, Transactions AmericanGeophysical Union: 93(25), pp. 236, 2012.
[7]K. Anderson, and K. J. Gaston, “Lightweight Unmanned Aerial Vehicles will Revolutionize Spatial Ecology,” Frontiers in Ecology and the Environment: 11(3), pp. 138–146, 2013.
[8]G. Pajares, “Overview and Current Status of Remote Sensing Applications Based on Unmanned Aerial Vehicles (UAVs),” Photogrammetric Engineering and Remote Sensing: 81(4), pp. 281–329, 2015.
[9]O. Alvear, W. Zamora, C. Calafate, J. C. Cano, and P. Manzoni, “An Architecture Offering Mobile Pollution Sensing with High Spatial Resolution,” Journal of Sensors:2016, 2016.
[10]N. Ya’acob, M. Zolkapli, J. Johari, A. L. Yusof, S. S. Sarnin, and A. Z. Asmadinar, “UAV Environment Monitoring System,” 2017 International Conference on Electrical Electronics and System Engineering (ICEESE), pp. 105-109, 2017.
[11]T. F. Villa, F. Gonzalez, B. Miljievic, Z. D. Ristovski, and L. Morawska, “An Overview of Small Unmanned Aerial Vehicles for Air Quality Measurements: Present Applications and Future Prospectives,” Sensors: 16(7), pp. 1072, 2016.
[12]T. F. Villa, F. Salimi, K. Morton, L. Morawska, and F. Gonzalez, “Development and Validation of a UAV Based System for Air Pollution Measurements,” Sensors: 16(12), pp. 2202-2217, 2016.
[13]O. Alvear, C. T. Calafate, E. Hernández, J. C. Cano, and P. Manzoni, “Mobile Pollution Data Sensing Using UAVs,” The 13th international conference on advances in mobile computing and multimedia, pp.393–397, 2015
[14]J. Wivou, L. Udawatta, A. Alshehhi, E. Alzaabi, A. Albeloshi, and S. Alfalasi, “Air Quality Monitoring for Sustainable Systems via Drone Based Technology,” Information and Automation for Sustainability (ICIAfS’16), pp. 1-5, 2016.
[15]O. Alvear, N. R. Zema, E. Natalizio, and C. T. Calafate, “Using UAV-Based Systems to Monitor Air Pollution in Areas with Poor Accessibility,” Journal of Advanced Transportation, pp. 1-14, 2017.
[16]Y. Yang, Z. Zheng, K. Bian, L. Song, and Z. Han, “Realtime Profiling of Fine-Grained Air Quality Index Distribution using UAV Sensing,” IEEE Internet Things Journal: 5(1), pp. 186-198, Feb. 2018.
[17]U. Hunkeler, H. L. Truong, and S. C. Andy, “MQTT-S - A Publish/Subscribe Protocol for Wireless Sensor Networks,” Communication Systems Software and Middleware and Workshops, pp. 791-798, 2008.
[18]X. Li, Y. Zhao, J. Zhang, and Y. Dong, "A Hybrid PSO Algorithm Based Flight Path Optimization for Multiple Agricultural UAVs," 2016 IEEE 28th International Conference on Tools with Artificial Intelligence (ICTAI), pp. 691-697, 2016.
[19]Q. Wang, A. Zhang, and L. Qi, "Three-dimensional Path Planning for UAV Based on Improved PSO Algorithm," The 26th Chinese Control and Decision Conference (2014 CCDC), pp. 3981-3985, 2014.
[20]M. Zhang, “PSO&PID Controller Design of UAV Formation Flight,” 2016 IEEE Chinese Guidance, Navigation and Control Conference (CGNCC), pp. 592-596, 2016.
[21]D. B. Turner, “Workbook of Atmospheric Dispersion Estimates,” EPA, Research Triangle Park, NC, 1970.
[22]S. Brusca, F. Famoso, R. Lanzafame, S, Mauro, A. Marino Cugno Garrano, and P. Monforte, “Theoretical and Experimental Study of Gaussian Plume Model in Small Scale System,” 71st Conference of the Italian Thermal Machines Engineering Association (AIT2016), 101, pp. 58-65, 2016.
[23]G. Sriram, N. K. Mohan and V. Gopalasamy, “Sensitivity Study of Gaussian Dispersion Models,” Journal of Scientific & Industrial Research, 65, pp. 321-324, 2006.
[24]P. Tosato, D. Facinelli, M. Prada, L. Gemma, M. Rossi, and D. Brunelli, “An Autonomous Swarm of Drones for Industrial Gas Sensing Application,” 2019 IEEE 20th International Symposium on "A World of Wireless, Mobile and Multimedia Networks" (WoWMoM), pp. 1-6, 2019.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊