跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.108) 您好!臺灣時間:2025/09/02 21:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張育綸
研究生(外文):Yu-lun Chang
論文名稱:二氧化鈦光觸媒之合成與性質探討
論文名稱(外文):Preparation and Characterization of TiO2 Photocatalysts
指導教授:余宣賦
指導教授(外文):Hsuan-Fu Yu
學位類別:碩士
校院名稱:淡江大學
系所名稱:化學工程與材料工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:84
中文關鍵詞:二氧化鈦光觸媒溶膠-凝膠法亞甲基藍
外文關鍵詞:TiO2Photocatalystssol-gel processMethylene blue
相關次數:
  • 被引用被引用:0
  • 點閱點閱:292
  • 評分評分:
  • 下載下載:35
  • 收藏至我的研究室書目清單書目收藏:0
本實驗以溶膠-凝膠法製備二氧化鈦光觸媒。首先將含有四乙基氧鈦之醇溶液滴入去離子水中,接著在90oC下進行迴流三小時。利用硝酸與氨水調整實驗中之pH值,所製得之粉體經過90oC乾燥後再進行不同溫度之煅燒。經由煅燒所得之粉體藉由XRD、DSC、TG、IR、BET、SEM及TEM做性質分析。而粉體之光活性測試則是分別在365nm紫外光燈及螢光燈管照射下,量測其對亞甲基藍的分解效率。結果顯示硝酸可能與四乙基氧鈦進行化學反應,導致煅燒後之二氧化鈦在結構上產生缺憾。此結構上的缺憾延緩了二氧化鈦由銳鈦礦轉變為金紅石。而pH值的改變影響了粉體的結晶度、相轉變及燒結溫度。在pH=7時,單一銳鈦礦相態可以維持在900oC。而pH=8及800oC煅燒後的粉體無論在365nm紫外光或螢光燈管的照射下,對於分解亞基藍擁有最佳的表現。
TiO2 photocatalysts were prepared using a sol-gel method. Alcoholic solution of tetraethylorthotitanite was dropped into de-ionized water, followed by refluxing the liquid at 90 oC for 3 hr. The pH of liquid was adjusted using HNO3 and NH4OH. The obtained particles were dried at 90 oC and calcined at different temperatures. The resultant calcined particles were characterized using XRD, DSC, TG, IR, BET, SEM, and TEM. Photoactivity of the obtained particles was investigated by degrading methylene blue under illumination of 365nm UV and fluorescent light. The results indicated that HNO3 may react with tetraethylorthotitanite and result in the formation of structure defects in TiO2 after calcination. These structure defects retarded phase transformation of anatase to rutile. Effects of pH on crystallinity, phase transformation and sintering temperature were investigated. At pH = 7, anatase nanoparticles can be retained at temperatures as high as 900 oC without transforming to rutile phase. The specimen obtained at pH = 8 and at 800 oC showed the highest photoactivity on degrading methylene blue under either 365nm UV or fluorescent light illumination.
CONTENS OF FIGURES III
CONTENS OF TABLES IX
CHAPTER 1 INTRODUCTION 1
CHAPTER 2 LITERATURE REVIEW 3
2-1 Titanium Dioxide 3
2-2 Preparation of Titanium Dioxide 9
2-2-1 Sol-Gel Method 9
2-2-2 Microemulsion Method 11
2-2-3 Metallorganic Chemical Vapor Deposition 11
2-3 Improvements of Photoability 13
2-3-1 Doping Metallic Ions 13
2-3-2 Coupled photocatalysts 16
2-3-3 Dye sensitized photocatalysts 17
2-4 Quantum Size Effect 18
CHAPTER 3 EXPERIMENTAL TECHNIQUES 20
3-1 Experimental 20
3-1-1 Pure TiO2 20
3-1-1 Undoped TiO2 20
3-1-3 TiO2 doped with vanadium 21
3-2 Characteristic Analyses 24
3-2-1 X-ray Diffraction 24
3-2-2 Electron Microscopy 25
3-2-3 Infrared Spectroscopy 25
3-2-4 Thermal Analyses 26
3-2-5 BET Analysis 27
3-3 Photocatalytic Analysis 28
3-3-1 Methylene Blue 28
3-3-2 Design of Photocatalysis 28
CHAPTER 4 RESULTS AND DISCUSSION 31
4-1 Comparisons with Pure TiO2 and Commercial P25 31
4-2 Undoped TiO2 without adjusting pH 39
4-3 Undoped TiO2 with adjusting pH 46
4-4 Doped TiO2 with vanadium at pH=7 75
CHAPTER 5 CONCLUSIONS 80
REFERENCES 81
1. A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode”, Nature, 37, 238 (1972)
2. Phase Diagrams for Ceramists Figure, pp. 4150~4999, The American Ceramic Society Inc. (1975)
3. A. L. Linsebigler, G. Lu, and J. T. Yates, “Photocatalysis on TiO2 surfaces : Principles, Mechanisms, and Selected Results”, Chem. Rev., 95, 735 (1995)
4. J. K. Burdett, T. Hughbanks, G. J. Miller, J. W. Richardson, and J. V. Smith, “Structural-Electronic Relationships in Inorganic Solids : Powder Neutron Diffraction Studies of the Rutile and Anatase Polygraphs of Titanium Dioxide at 15 and 295 K”, J. Am. Chem. Soc., 109, 3639 (1987)
5. A. Fujishima, T. N. Rao, D. A. Trylk, “Titanium dioxide photocatalysis”, J. Photochem. Photobio. C, 11, 21 (2000)
6. M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann, “Environmental Applications of Semiconductor Photocatalysis”, Chem. Rew. 95, 69-96 (1995)
7. T. H. Lim, S. M. Jeong, S. D. Kim and J. Gyenis, “Photocatalytic decomposition of NO by TiO2 particles”, J. Photochem. Photobio. A, 134, 209 (2000)
8. H. Yamashita, Y. Ichihashi, S. G. Zhang, Y. Matsumura, Y. Souma, T. Tatsumi and M. Anpo, “Photocatalytic decomposition of NO at 275K on titanium oxide catalysts anchored within zeolite cavities and framework”, App. Surf. Sci., 121/122, 305 (1997)
9. H. Yoneyama and T. Torimoto, “Titanium dioxide/adsorbent hybrid photocatalysis for photodestruction of organic substances of dilute concentrations”, Catal. Today, 58, 133 (2000)
10. A. D. Paola, E. G. Lopez, S. Ikeda, G. Marci, B. Ohtani and L. Palmisano, “Photocatalytic degradation of organic compounds in aqueous system by transition metal doped polycrystalline TiO2”, Catal. Today, 75, 87-93 (2002)
11. H. Tamashita, M. Harada, J. Misaka, M. Takeuchi, K. Ikeue and M. Anpo, “Degradation of propanol diluted in water under visible light irradiation using metal ion-implanted titanium dioxide photocatalysts”, J. Photochem. Photobio. A, 148, 257-261 (2002)
12. A. Fujishima, K. Honda, “Electrochemical photolysis of water at semiconductor electrode” Nature, 238, 37-38 (1972)
13. S. C. Moon, H. Mametsuka, S. Tabata and E. Suzuki, “Photocatalytic production of hydrogen from water using TiO2 and B/TiO2”, Catal. Today, 58, 125-132 (2000)
14. M. Anpo, H. Yamashita, Y .Ichihashi and S. Ehara, “Photocatalytic reduction of CO2 with H2O on various titanium oxide catalysts”, J. Electroanalytical Chem., 369, 21-26 (1995)
15. M. Anpo, T. Shima, S. Kodama, and Y. KuboKawa, “Photocatalytic Hydrogenation of CH3COOH with H2O on Small-Particle TiO2:Size Quantization Effects and Reaction Intermediates”, J. Phys. Chem., 91, 4305-4310 (1987)
16. H. Yamashita, Y. Fuji, Y. Ichihashi, S. G. Zhang, K. Ikeue, D. R. Park, K. Kayano, T. Tatsumi and M. Anpo, “Selective formation of CH3OH in the photocatalytic reduction of CO2 with H2O on titanium oxides highly dispersed within zeolites and mesoporous molecular sieves”, Catal. Today, 45, 221-227 (1998)
17. R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi and T. Watanable, “Ligh-induced amphiphilic surfaces.” Nature, 388, 431-432 (1997)
18. C. J. Brinker and G. W. Scherer, Sol Gel Science, Academic Press (1990)
19. Narula, K. Chaitanya, Ceramic Precursor Technology and Its Applications, New York : Marcel Dekker (1995)
20. B. E. Yodas, “Hydrolysis of titanium alkoxides and effects of hydrolytic polycondensation parameters”, J. Mater. Sci. 21, 1087 (1986)
21. F. Cot, A. Larbot, G. Nabias and L. Cot, “Preparation and characterization of colloidal solution derived crystallized titania powder”, J. Eur. Ceram. Soc., 18, 2175-2181 (1998)
22. H. K. Park, D. K Kim and C. H. Kim, “Effect of solvent on titania particle formation and morphology in thermal hydrolysis of TiCl4”, J. Am. Ceram. Soc., 80(3), 743-749 (1997)
23. Y. Wei, R. Wu and Y. Zhang, “Preparation of monodispersed spherical TiO2 powder by forced hydrolysis of Ti(SO4)2 solution”, Mater. Lett., 41, 101-103 (1999)
24. R. Zhang and L. Gao, “Preparation of nanosized titania by hydrolysis of alkoxides titanium in micelles.” Mate. Res. Bull., 37, 1659-1666 (2002)
25. O. J. Jung, S. H. Kim, K. H. Cheong, W. Li, and S. I. Saha, “Metallorganic Chemical Vapor Deposition and Characterization of TiO2 Nanoparticles “, Bull. Korean Chem. Soc., 24, 149 (2003)
26. T. Umebayashi, T. Yamaki, H. Itoh and K. Asai, “Analysis of electronic structures of 3d transition metal-doped TiO2 based on band calculations. J. Phys. and Chem. of Solids, 63, 1909-1920 (2002)
27. H. Jiang and L. Gao, “Enhancing the UV inducing hydrophilicity of TiO2 thin film by doping Fe ions”, Mater. Chem. Phys. 77, 878—881 (2002)
28. M. I. Litter and J. A. Navio, “Photocatalytic properties of iron-doped titania semiconductors”, J. Photochem. Photobio. A, 23, 171-181 (1996)
29. K. Wilke and H. D. Breuer, “The influence of transition metal doping on the physical and photocatalytic properties of titania”, J. Photochem. Photobio. A, 12, 149-53 (1999)
30. N. Serpone, P. Maruthamuthu, P. Pichat, E. Pelizzetti, H. Hidaka, “Exploiting the interparticle electron transfer process in the photocatalysed oxidation of phenol, 2-chlorophenol and pentachlorophenol: chemical evidence for electron and hole transfer between coupled semiconductors.”, J. Photochem. Photobio. A, 85, 247-255 (1995)
31. T. Tatsuma, S. Takeda, S. Saitoh, Y. Ohko, A. Fujishima, “Bactericidal effect of an energy storage TiO2—WO3 photocatalyst in dark.” Electrochem. Communications, 5, 793—796 (2003)
32. A. Fuerte, M. D. Hernandez-Alonso, A. J. Maira, A. M. Arias, M. F. Garcia, J. C. Conesa, J. Soria, and G. Munuera, “Nanosize Ti—W Mixed Oxides: Effect of Doping Level in the Photocatalytic Degradation of Toluene Using Sunlight-Type Excitation.” J. Cata., 212, 1—9 (2002)
33. D. Chatterjee and A. Mahata, “Demineralization of organic pollutants on the dye modified TiO2 semiconductor particulate system using visible light”, Appl. Catal. B:, 33, 119—125 (2001)
34. D. Chatterjee and A. Mahata, “Visible light induced photodegradation of organic pollutants on dye adsorbed TiO2 surface”, J. Photochem. Photobio. A, 153, 199—204 (2002)
35. R. Abe, K. Hara, K. Sayama, K. Domen and H. Arakawa, “Steady hydrogen evolution from water on Eosin Y-fixed TiO2 photocatalyst using a silane -coupling reagent under visible light irradiation”, J. Photochem. Photobio. A, 137, 63—69 (2000)
36. R. Abe, K. Sayama and H. Arakawa, “Significant influence of solvent on hydrogen production from aqueous I-3 /I- redox solution using dye-sensitized Pt/TiO2 photocatalyst under visible light irradiation”, Chem. Phys. Lett. , 379, 230—235 (2003)
37. L. Brus, “Electronic Wave Funtions In Semiconductor Clusters: Experiment and Theory”, J. Phys. Chem., 90, 2555-2560 (1986)
38. A. Houas, H. Lachheb, M. Ksibi, E. Elaloui, C. Guillard and J. M. Herrmann, “Photocatalytic degradation pathway of methylene blue in water”, Appl. Catal. B:, 31, 145—157 (2001)
39. K. Y. Jung, S. B. Park and S. K. Ihm, “Linear relationship between the crystallite size and the photoactivity of non-porous titania ranging from nanometer to micrometer size”, Appl. Catal. A:, 224, 229—237 (2002)
40. M. N. Rahaman, “Ceramic Processing and Sintering”, Dekker, New York (1995)
41. P. Courtine and E. Bordes, “Mode of arrangement of components in mixed vanadia and its bearing for oxidation catalysis”, App.l Catal. A:, vol.157, 45-65 (1997)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top