|
1. A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode”, Nature, 37, 238 (1972) 2. Phase Diagrams for Ceramists Figure, pp. 4150~4999, The American Ceramic Society Inc. (1975) 3. A. L. Linsebigler, G. Lu, and J. T. Yates, “Photocatalysis on TiO2 surfaces : Principles, Mechanisms, and Selected Results”, Chem. Rev., 95, 735 (1995) 4. J. K. Burdett, T. Hughbanks, G. J. Miller, J. W. Richardson, and J. V. Smith, “Structural-Electronic Relationships in Inorganic Solids : Powder Neutron Diffraction Studies of the Rutile and Anatase Polygraphs of Titanium Dioxide at 15 and 295 K”, J. Am. Chem. Soc., 109, 3639 (1987) 5. A. Fujishima, T. N. Rao, D. A. Trylk, “Titanium dioxide photocatalysis”, J. Photochem. Photobio. C, 11, 21 (2000) 6. M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann, “Environmental Applications of Semiconductor Photocatalysis”, Chem. Rew. 95, 69-96 (1995) 7. T. H. Lim, S. M. Jeong, S. D. Kim and J. Gyenis, “Photocatalytic decomposition of NO by TiO2 particles”, J. Photochem. Photobio. A, 134, 209 (2000) 8. H. Yamashita, Y. Ichihashi, S. G. Zhang, Y. Matsumura, Y. Souma, T. Tatsumi and M. Anpo, “Photocatalytic decomposition of NO at 275K on titanium oxide catalysts anchored within zeolite cavities and framework”, App. Surf. Sci., 121/122, 305 (1997) 9. H. Yoneyama and T. Torimoto, “Titanium dioxide/adsorbent hybrid photocatalysis for photodestruction of organic substances of dilute concentrations”, Catal. Today, 58, 133 (2000) 10. A. D. Paola, E. G. Lopez, S. Ikeda, G. Marci, B. Ohtani and L. Palmisano, “Photocatalytic degradation of organic compounds in aqueous system by transition metal doped polycrystalline TiO2”, Catal. Today, 75, 87-93 (2002) 11. H. Tamashita, M. Harada, J. Misaka, M. Takeuchi, K. Ikeue and M. Anpo, “Degradation of propanol diluted in water under visible light irradiation using metal ion-implanted titanium dioxide photocatalysts”, J. Photochem. Photobio. A, 148, 257-261 (2002) 12. A. Fujishima, K. Honda, “Electrochemical photolysis of water at semiconductor electrode” Nature, 238, 37-38 (1972) 13. S. C. Moon, H. Mametsuka, S. Tabata and E. Suzuki, “Photocatalytic production of hydrogen from water using TiO2 and B/TiO2”, Catal. Today, 58, 125-132 (2000) 14. M. Anpo, H. Yamashita, Y .Ichihashi and S. Ehara, “Photocatalytic reduction of CO2 with H2O on various titanium oxide catalysts”, J. Electroanalytical Chem., 369, 21-26 (1995) 15. M. Anpo, T. Shima, S. Kodama, and Y. KuboKawa, “Photocatalytic Hydrogenation of CH3COOH with H2O on Small-Particle TiO2:Size Quantization Effects and Reaction Intermediates”, J. Phys. Chem., 91, 4305-4310 (1987) 16. H. Yamashita, Y. Fuji, Y. Ichihashi, S. G. Zhang, K. Ikeue, D. R. Park, K. Kayano, T. Tatsumi and M. Anpo, “Selective formation of CH3OH in the photocatalytic reduction of CO2 with H2O on titanium oxides highly dispersed within zeolites and mesoporous molecular sieves”, Catal. Today, 45, 221-227 (1998) 17. R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi and T. Watanable, “Ligh-induced amphiphilic surfaces.” Nature, 388, 431-432 (1997) 18. C. J. Brinker and G. W. Scherer, Sol Gel Science, Academic Press (1990) 19. Narula, K. Chaitanya, Ceramic Precursor Technology and Its Applications, New York : Marcel Dekker (1995) 20. B. E. Yodas, “Hydrolysis of titanium alkoxides and effects of hydrolytic polycondensation parameters”, J. Mater. Sci. 21, 1087 (1986) 21. F. Cot, A. Larbot, G. Nabias and L. Cot, “Preparation and characterization of colloidal solution derived crystallized titania powder”, J. Eur. Ceram. Soc., 18, 2175-2181 (1998) 22. H. K. Park, D. K Kim and C. H. Kim, “Effect of solvent on titania particle formation and morphology in thermal hydrolysis of TiCl4”, J. Am. Ceram. Soc., 80(3), 743-749 (1997) 23. Y. Wei, R. Wu and Y. Zhang, “Preparation of monodispersed spherical TiO2 powder by forced hydrolysis of Ti(SO4)2 solution”, Mater. Lett., 41, 101-103 (1999) 24. R. Zhang and L. Gao, “Preparation of nanosized titania by hydrolysis of alkoxides titanium in micelles.” Mate. Res. Bull., 37, 1659-1666 (2002) 25. O. J. Jung, S. H. Kim, K. H. Cheong, W. Li, and S. I. Saha, “Metallorganic Chemical Vapor Deposition and Characterization of TiO2 Nanoparticles “, Bull. Korean Chem. Soc., 24, 149 (2003) 26. T. Umebayashi, T. Yamaki, H. Itoh and K. Asai, “Analysis of electronic structures of 3d transition metal-doped TiO2 based on band calculations. J. Phys. and Chem. of Solids, 63, 1909-1920 (2002) 27. H. Jiang and L. Gao, “Enhancing the UV inducing hydrophilicity of TiO2 thin film by doping Fe ions”, Mater. Chem. Phys. 77, 878—881 (2002) 28. M. I. Litter and J. A. Navio, “Photocatalytic properties of iron-doped titania semiconductors”, J. Photochem. Photobio. A, 23, 171-181 (1996) 29. K. Wilke and H. D. Breuer, “The influence of transition metal doping on the physical and photocatalytic properties of titania”, J. Photochem. Photobio. A, 12, 149-53 (1999) 30. N. Serpone, P. Maruthamuthu, P. Pichat, E. Pelizzetti, H. Hidaka, “Exploiting the interparticle electron transfer process in the photocatalysed oxidation of phenol, 2-chlorophenol and pentachlorophenol: chemical evidence for electron and hole transfer between coupled semiconductors.”, J. Photochem. Photobio. A, 85, 247-255 (1995) 31. T. Tatsuma, S. Takeda, S. Saitoh, Y. Ohko, A. Fujishima, “Bactericidal effect of an energy storage TiO2—WO3 photocatalyst in dark.” Electrochem. Communications, 5, 793—796 (2003) 32. A. Fuerte, M. D. Hernandez-Alonso, A. J. Maira, A. M. Arias, M. F. Garcia, J. C. Conesa, J. Soria, and G. Munuera, “Nanosize Ti—W Mixed Oxides: Effect of Doping Level in the Photocatalytic Degradation of Toluene Using Sunlight-Type Excitation.” J. Cata., 212, 1—9 (2002) 33. D. Chatterjee and A. Mahata, “Demineralization of organic pollutants on the dye modified TiO2 semiconductor particulate system using visible light”, Appl. Catal. B:, 33, 119—125 (2001) 34. D. Chatterjee and A. Mahata, “Visible light induced photodegradation of organic pollutants on dye adsorbed TiO2 surface”, J. Photochem. Photobio. A, 153, 199—204 (2002) 35. R. Abe, K. Hara, K. Sayama, K. Domen and H. Arakawa, “Steady hydrogen evolution from water on Eosin Y-fixed TiO2 photocatalyst using a silane -coupling reagent under visible light irradiation”, J. Photochem. Photobio. A, 137, 63—69 (2000) 36. R. Abe, K. Sayama and H. Arakawa, “Significant influence of solvent on hydrogen production from aqueous I-3 /I- redox solution using dye-sensitized Pt/TiO2 photocatalyst under visible light irradiation”, Chem. Phys. Lett. , 379, 230—235 (2003) 37. L. Brus, “Electronic Wave Funtions In Semiconductor Clusters: Experiment and Theory”, J. Phys. Chem., 90, 2555-2560 (1986) 38. A. Houas, H. Lachheb, M. Ksibi, E. Elaloui, C. Guillard and J. M. Herrmann, “Photocatalytic degradation pathway of methylene blue in water”, Appl. Catal. B:, 31, 145—157 (2001) 39. K. Y. Jung, S. B. Park and S. K. Ihm, “Linear relationship between the crystallite size and the photoactivity of non-porous titania ranging from nanometer to micrometer size”, Appl. Catal. A:, 224, 229—237 (2002) 40. M. N. Rahaman, “Ceramic Processing and Sintering”, Dekker, New York (1995) 41. P. Courtine and E. Bordes, “Mode of arrangement of components in mixed vanadia and its bearing for oxidation catalysis”, App.l Catal. A:, vol.157, 45-65 (1997)
|