跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/09 05:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡在唐
研究生(外文):Tzai-Tang Tsai
論文名稱:以電動力法復育受油品污染土壤
論文名稱(外文):Remediation of Petroleum Contaminated Soil by Using Electrokinetic Technology
指導教授:薩支高薩支高引用關係
指導教授(外文):Jy-Gau Sah
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:環境工程與科學系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:德文
論文頁數:134
中文關鍵詞:電動力法土壤污染TPH-DBTEX
外文關鍵詞:Electrokinetic technologySoil contaminationTPH-DBTEX
相關次數:
  • 被引用被引用:27
  • 點閱點閱:859
  • 評分評分:
  • 下載下載:159
  • 收藏至我的研究室書目清單書目收藏:2
綜觀國內、外土壤污染事件發現其污染來源以事業廢水不當排放、有害廢棄物任意棄置及地下油管破裂或油槽鏽蝕老化為主,在這些土壤污染事件中普遍以油品污染較受矚目。針對油品污染場址的特性差異而有許多復育技術的運用,但在經濟及技術考量下,電動力法確實為可行性高的現地整治技術。本研究首先探討溫度、含水率及生物降解等環境因子對TPH-D(總石油碳氫化合物-柴油)及BTEX(苯、甲苯、乙苯及二甲苯合稱)在老埤系中削減影響,進而分析TPH-D及BTEX在老埤系中的移動性,最後探討在不同電極、電解液種類與濃度變化、土壤種類及腐植土添加量等配製中,TPH-D及BTEX經電動力法復育後削減變化。
結果顯示,當TPH-D及BTEX受到不同溫度及含水率影響,其削減率均是以含水(55%含水率)高於不含水(風乾土),其中以40℃(55%含水率)為最高;另也發現,因試驗時間最長只有45天,BTEX受到生物降解作用並不顯著,但TPH-D在滅菌與否的比較中發現,其衰減率稍有差異,倘若能延長反應時間,生物應有時間及空間進行β-氧化反應,分解油品污染物。
在土壤管柱淋洗試驗中(未通電),TPH-D受到溶解度影響其移動性皆比BTEX慢,不論是TPH-D或BTEX的移動性快慢依序為石英砂>老埤系+石英砂 1:1 (w/w)>老埤系>老埤系+2.5wt%腐植土。通電後,TPH-D與BTEX皆有往陰極移動趨勢,其中以BTEX較顯著,其在陰極區的濃度以石英砂(以0.1M NaCl為電解液,2330 mg/kg)較高,而老埤系+2.5wt%腐植土(以蒸餾水為電解液,1017 mg/kg)較低。由此可證,土壤質地、電解液種類及溶解度等均是油品移動性的考量參數。
在電動力法復育受油品污染土壤方面,經電壓40Volts分別通電21及45天後,BTEX及TPH-D在老埤系中的削減率(含自然衰減率)皆可達90% (C/Co)以上,且削減率依序為鈦棒電極組(以0.1M NaCl為電解液)>鐵網電極組(以0.1M NaCl為電解液)>鈦棒電極組(以蒸餾水為電解液)>鐵網電極組(以蒸餾水為電解液);經與無觸媒效應的石墨棒電極對照組比較後發現,鈦棒及鐵網電極腐蝕產生的Ti(OH)4 (X-ray鑑定為TiO2水解後的產物) 及無定形鐵Feo (以Fe+2及Fe+3型態佔優勢) 確實可進行催化作用,提昇油品削減率。TPH-D及BTEX在供試土壤中皆較符合Freundlich 等溫吸附曲線,呈現多層吸附現象;當腐植土添加量漸增時,TPH-D及BTEX削減率會有隨之降低的趨勢,且不同腐植土添加量與油品的削減趨近線性關係,顯示有機質含量多寡確實為電動力法的重要影響因子。
Soils may be contaminated by petroleum-hydrocarbon via routes such as unseemly discharge of industrial wastewater﹑unsuitable disposal of hazardous wastes and spill from oil tank rustiness. Remediation technology selection must be depend on site specific. Electrokinetic technology (EK) is a feasible method for efficiently and economically remediate contaminated soil under certain circumstance. The objectives of study is to evaluate the reducing effects of TPH-D (Total Petroleum Hydrocarbon-Diesel) and BTEX (Benzene﹑Toluene﹑Ethylbenzene and Xylene) in Lao-Pi soil under different environmental conditions such as temperature﹑moisture contents and biodegradation. We also investigate the reducing variations after EK remediation using different electrodes﹑electrolytes﹑soil series and humic substance(HS) addition.
The results indicate that the reducing rate of TPH-D and BTEX which changed by temperature and moisture contents were as follows: 55% of moisture contents>dry basis, and that in 40℃ (with 55% of moisture contents) had the highest rate. The biodegradation of BTEX was not noticed after 45 days. It was conjectured that the variations will increased with a longer test period.
In the soil washing experiments (nonelectrify), the mobility was influenced by solubility that make TPH-D moved slower than BTEX. The mobility of TPH-D or BTEX in different medium were all as follows: quartz sand > Lao-Pi series and quartz sand (1:1,w/w)>Lao-Pi series>Lao-Pi series with2.5wt% HS. After electrifying, both TPH-D and BTEX had tendency to move to cathode, and BTEX moved faster than TPH-D. The concentration of BTEX on cathode in quartz sand (electrolytes were 0.1M NaCl, 2330mg/kg) was higher than in Lao-Pi series with2.5wt% HS (electrolytes were distilled water, 1017mg/kg). It demonstrated that the soil texture﹑electrolyte types﹑solubility and Koc were all need to be considered in petroleum mobility in soils.
After 21 and 45 days electrified under 40 volts , the reducing rate (C/C0) of TPH-D and BTEX in Lao-Pi series were both excess 90%, and the order of using electrode were as follows: Ti electrodes (electrolytes were 0.1M NaCl)>iron net electrodes (electrolytes were 0.1M NaCl) >Ti electrodes (electrolytes were distilled water)>iron net electrodes (electrolytes were distilled water). Comparing with Ti or iron net with graphite electrode that without catalyzer effect, we found that Ti(OH)4 (hydrolysate of TiO2 by X-ray identification) and Feo (Fe2+ and Fe3+ were dominant species) which were come from Ti and iron net electrodes corroded could catalysis and improve oil reducing rate. Due to the multiple-layer adsortion characteristics of TPH-D and BTEX on soil surface, the adsorption is fit for Freundlich isotherm. The TPH-D and BTEX reducing rate significantly decreased while increase in HS addition. Organic matter contents were proved to be the critical factor of EK efficiency.
目 錄
頁次
中文摘要 ..................................................................................... Ⅰ
英文摘要 ..................................................................................... Ⅲ
誌謝 ............................................................................................. Ⅴ
目錄 ............................................................................................. Ⅵ
表索引 ......................................................................................... XIII
圖索引 ......................................................................................... XV
第一章 前言 ..................................................................……..... 1
1.1 研究緣起 ..............................................................……….... 1
1.2 研究目的 ...............................................................………... 2
第二章 文獻回顧 ....................................................................... 3
2.1 有機污染之特性及現況 ...................................................... 3
2.2 油品介紹 .............................................................................. 4
2.2.1 石油的成分 ....................................................................... 4
2.2.2 油品的分類 ....................................................................... 5
2.3 油品污染物的來源及宿命 .................................................. 9
2.4 油品污染物對環境的衝擊 .................................................. 11
2.4.1 油品污染物對空氣的影響 ............................................. 11
2.4.2 油品污染物對土壤的影響 ............................................. 11
2.4.3 油品污染物對水體的影響 ............................................. 11
2.5 油品污染場址的健康風險評估 ........................................ 13
2.6 污染指標 ............................................................................ 13
2.6.1 TPH-D .......................................................................….... 13
2.6.2 BTEX ................................................................................ 14
2.6.3 法令規範 ......................................................................... 16
2.7 土壤污染整治復育技術 .................................................... 17
2.7.1 土壤管柱清洗復育 ......................................................... 17
2.7.2 低溫熱脫附 ..................................................................... 18
2.7.3 土壤蒸氣萃取法 ............................................................. 18
2.7.4 臭氧氧化法 ..................................................................... 19
2.7.5 Fenton氧化法 ................................................................. 20
2.7.6 土壤生物復育技術 ......................................................... 20
2.8 電動力法復育技術介紹 .................................................... 21
2.8.1 電化學理論之應用 ........................................ 21
2.8.2 電動力法復育技術之演進 ............................................. 24
2.8.3 電動力法技術之應用 ..................................................... 25
2.8.4 電動力法復育技術原理及機制 ..................................... 26
2.8.5 電動力法復育技術之影響因子 ..................................... 30
2.8.6 電動力法復育技術相關參數簡介 ................................. 35
2.8.7 油品污染物通電後分解產物推估 ................................. 37
第三章 材料與方法 ................................................................. 38
3.1 試驗藥品 ............................................................................ 38
3.2 試驗設備 ............................................................................ 38
3.3 試驗材料 ............................................................................ 39
3.3.1 土壤樣品 ......................................................................... 39
3.3.2 油品種類 ......................................................................... 40
3.3.3 電解液種類 ..................................................................... 40
3.3.4 電極種類 ......................................................................... 40
3.3.5 觸媒種類 ......................................................................... 42
3.4 實驗流程 ............................................................................ 43
3.5 土樣基本性質分析 ............................................................ 44
3.6 油品污染土配製 ................................................................ 47
3.7 油品污染物檢量線配製 .................................................... 48
3.8 油品污染物定性分析 ........................................................ 48
3.9 吸附曲線分析試驗 ............................................................ 50
3.10 油品污染物自然衰減分析 …............................................ 50
3.11 實驗條件分析 ......……........................................…..…… 50
3.11.1 萃取液種類 ……........................................................... 50
3.11.2 萃取時間 ………........................................................... 51
3.11.3 改變溫度與含水率環境對油品衰減影響 ................... 51
3.11.4 生物降解對油品衰減影響 ………............................... 51
3.12 油品污染物移動性試驗 .................................................. 52
3.12.1 未通電前土壤管柱淋洗試驗 ....………....................... 52
3.12.2 通電後油品移動性分析 .....…….................................. 53
3.13 電動力法復育油品污染土壤試驗 .................................. 53
3.13.1 改變電解液種類及濃度對油品污染物削減影響 ..…. 53
3.13.2 改變電極種類對油品污染物削減影響 ....................... 53
3.13.3 改變土壤種類對油品污染物削減影響 ....................... 55
3.13.4 改變腐植土添加量對油品污染物削減影響................. 55
3.14 印證實驗 .......................................................................... 56
3.14.1 鈦棒腐蝕產物及高純度TiO2 X-ray鑑定分析 ............ 56
3.14.2 添加高純度觸媒對油品削減影響 ............................... 56
3.14.3 照光試驗 …................................................................... 57
3.15 氣相層析儀分析條件 ...................................................... 57
3.16 簡易試驗品質管制分析 .................................................. 58
3.17 油品削減率計算 .............................................................. 60
第四章 結果與討論 ................................................................. 62
4.1 土樣基本性質分析結果 .................................................... 62
4.2 等溫吸附曲線分析結果 .................................................... 65
4.3 油品污染物自然衰減分析結果 ........................................ 68
4.4 實驗條件分析結果 ............................................................ 69
4.4.1 萃取時間及溶劑種類 ..................................................... 69
4.4.2 改變溫度及含水率對油品衰減影響 ............................. 72
4.4.3 生物降解對油品衰減之影響 ......................................... 74
4.5 油品污染物移動性試驗 .................................................... 75
4.5.1 柴油TPH-D移動性試驗 ................................................. 75
4.5.2 九五無鉛汽油BTEX移動性試驗 .................................. 77
4.6 電動力法復育油品污染土壤試驗 …................................ 80
4.6.1 電動力法綜合參數分析 ................................................. 80
4.6.2 TPH-D ............................................................................... 90
4.6.2.1 電解液種類及濃度變化對TPH-D削減率影響........... 90
4.6.2.2 電極種類對TPH-D削減影響 ..................................... 90
4.6.2.3 改變土壤種類對TPH-D削減影響 ............................. 92
4.6.2.4 改變腐植土添加量對TPH-D削減影響 ...................... 93
4.6.3 BTEX ................................................................................ 96
4.6.3.1 電解液種類及濃度變化對BTEX削減影響 .............. 96
4.6.3.2 電極種類對BTEX削減影響 ...................................... 97
4.6.3.3 改變土壤種類對BTEX削減影響 ............………...... 99
4.6.3.4 改變腐植土濃度對BTEX削減影響 .......................... 100
4.6.4 電極腐蝕量與油品污染物削減關係 ............................. 102
4.6.4.1 電極-鈦棒 ..................................................................... 102
4.6.4.2 電極-鐵網 ..................................................................... 105
4.7 印證試驗 ............................................................................ 109
4.7.1 鈦棒腐蝕產物及高純度TiO2 X-ray 鑑定分析 ............. 109
4.7.2 通電後無定形鐵含量分析 ............................................. 110
4.7.3 添加高純度觸媒對TPH-D削減影響 ............................ 111
4.7.4 添加高純度觸媒對BTEX削減影響 ............................. 112
4.7.5 照光試驗 ......................................................................... 113
4.8 電力耗損 ............................................................................ 116
第五章 結論與建議 ...........................….................................. 118
參考文獻 ..................................................................................... 121
作者簡介 ..................................................................................... 134
參考文獻
1. 丁力行,2000,土壤及地下水污染整治法實務與因應對策,永然文化出版股份有限公司,台北,pp. 79-213。
2. 土壤及地下水污染整治網,http://ww2.epa.gov.tw/SoilGW/index.asp.
3. 中國石油公司油品行銷事業部,http://www.cpctmtd.com.Tw/product — 01.htm.
4. 王一雄,1997,土壤環境污染與農藥,明文書局印行。
5. 王一雄、陳尊賢、李達源,2001,「土壤資源利用與保育」,國立空中大學印行,pp. 159-177。
6. 王秀雯,1999,以電化學處理螯合劑復育受重金屬污染土壤之模擬洗出液,碩士論文,元智大學化學工程學系。
7. 王家祥,1998,臭氧處理石化污染土壤之可行性研究及機制探討,碩士論文,逢甲大學土木及水利工程研究所。
8. 王俊杰,2000,以觸媒氧化法處理一氧化氮之研究,碩士論文,國立中山大學環境工程研究所。
9. 史盟秀,2001,BTEX在幾種台灣主要土壤中之吸附與降解,碩士論文,國立屏東科技大學環境工程與科學系。
10. 田福助,1993,電化學理論與運用,總經銷新科技書局,台北,pp. 1-196。
11. 行政院環保署環境檢驗所,1995,土壤中酸鹼值測定方法,環境檢測方法彙編,NIEA S410.60T。
12. 行政院環境保護署,2001,土壤及地下水污染整治法-土壤污染管制標準,http://w3.epa.gov.tw/epalaw/index.htm。
13. 李明倫,1999,應用低溫熱脫附法於分析石油污染土壤之研究,碩士論文,國立屏東科技大學環境工程與科學系。
14. 李春穎、許煙明、陳忠仁,1995,材料科學與工程,高立圖書有限公司。
15. 李森吉,1997,以紅外線熱脫附系統復育受無鉛汽油污染土壤之研究,碩士論文,國立屏東科技大學環境工程與科學系。
16. 吳先琪、王西華、曾四恭、駱尚廉、林正芳,1993,台灣地區土壤自淨能力及污染評估方法之研究(第二年),環保署委託計畫,EPA-82-E3H1-09-01-(3).
17. 季允中,1997,低溫熱脫附裝置分析油污染土壤及石油碳氫化合物風化之研究,碩士論文,國立屏東科技大學環境工程與科學系。
18. 車明道,1993,土壤復育技術介紹及有效性評估,能源、資源與環境E.R.E.Q,pp. 41-46。
19. 林文元,1999,油品在幾種台灣土壤中之吸附、脫附與移動性探討,碩士論文,國立屏東科技大學環境工程與科學系。
20. 林正豐,2001,奈米二氧化鈦之製備及活性測定,碩士論文,國立台灣大學化學工程學研究所。
21. 林進財,2001,以健康風險評估訂定油污染場址之整治目標,碩士論文,國立中山大學環境工程研究所。
22. 林裕雄,2000,以電動法處理受三氯乙烯及單氯酚污染黏質土壤之研究,碩士論文,國立中興大學,pp. 1-27。
23. 林蔡毓,2001,以CVD法製備二氧化鈦光觸媒去除甲苯之研究,碩士論文,國立中興大學環境工程學系,pp. 9-125。
24. 金相燦主編,1998,環境毒性有機物污染化學,淑馨出版社。
25. 紀吉鴻,2000,電動法結合徑向電場及抽取系統處理重金屬污染土壤之實驗室研究,碩士論文,國立雲林科技大學。
26. 徐武軍、陳陵援、郭東瀛、邱作基,1998,石油化學工業能源、環保與工安篇,滄海書局,pp. 20-39。
27. 梁瑜玲,2002,甲苯在三種黏土礦物下長時間吸附機制,碩士論文,國立台灣大學環境工程學研究所,pp. 1-10。
28. 莊作權、王明光,1995,土壤分析手冊,中華土壤肥料學會。
29. 袁菁、高志明、王志哲、劉力群、陳威錦,2001,受BTEX污染壤質砂土之土壤管柱清洗復育研究,第十六屆廢棄物處理技術研討會論文集。
30. 袁菁、翁誌煌、陳威錦、江姿幸,2001,以複合界面活性劑操作流質提昇電動力技術處理四氯乙烯污染黏質土壤復育效率之研究,第十六屆廢棄物處理技術研討會論文集。
31. 袁菁、翁誌煌、江姿幸,2002,零價鐵粉提昇電動力處理四氯乙烯污染土壤之初步研究,第十七屆廢棄物處理技術研討會。
32. 袁澄波、石作珉、陳汝意,1999,石墨材料之開發利用,復漢出版社。
33. 魚崎 浩平、喜多 英明、黃忠良,1984,基本電化學,復漢出版社,台南。
34. 陳委承,2000,煉油廠中揮發性有機物特性之研究,碩士論文,國立台灣大學環境工程學研究所。
35. 陳政德,2000,電動力-Fenton 法結合生物分解現地處理受五氯酚污染土壤之研究,碩士論文,國立中山大學環境工程研究所,pp. 27-37。
36. 陳炳宏、焦士榮、鐘裕仁,2001,表土柴油污染批次處理Scale up之研究,第十六屆廢棄物處理技術研討會論文集。
37. 陳炳宏、焦士榮,2002,Fenton-like反應控制因子對柴油去除率的影響探討,第十七屆廢棄物處理技術研討會。
38. 陳俊溢,1996,以電動法復育受鎘及鉛污染土壤之研究,碩士論文,國立屏東科技大學環境工程與科學系,pp. 54-61。
39. 陳俊翔,2000,二氧化鈦觸媒製備對氣相苯及甲苯光催化分解之影響,碩士論文,國立台灣科技大學,pp. 1-21。
40. 陳琦瑜,魏國銘,樊汝麗,1989,以油料化學組成預測汽油辛烷值,石油季刊,第二十五卷,第四期,pp. 11-31。
41. 陳博彥、王雯、黃筠華、徐毓蘭、徐雅芬、羅志英、董金龍、陳啟祥,1997,受油污染場址復育可行性評估與整治工程,第五屆土壤污染防治研討會-污染土壤之整治復育技術專題論文集,pp. 263-283。
42. 郭文旭、姜明志、詹曜仲、俞賓、張丰矩,2002,光催化/光敏化程序處理加保利農藥廢水之研究,第二十七屆廢水處理技術研討會。
43. 郭魁士,1989,土壤實驗,中國書局。
44. 郭魁士,1990,土壤學,中國書局。
45. 翁誌煌,1997,以電滲透法處理受鎘污染之土壤,第五屆土壤污染防治研討會論文,pp. 323-341。
46. 黃文聖,1999,土壤中苯、甲苯、乙苯、二甲苯之熱脫附,碩士論文,元智大學化學工程學系,pp. 1-35。
47. 黃秋卿,2000,不同特性有機質對鄰-二甲苯、苯及酚吸附現象之研究,碩士論文,國立屏東科技大學環境工程與科學系。
48. 黃富明,1999,應用臭氧於石化污染土壤復育技術之初探,第十四屆廢棄物處理技術研討會論文集。
49. 黃嘉貞,2002,五氯酚在紅壤中的腐植化及吸附,碩士論文,國立屏東科技大學環境工程與科學系。
50. 許守信,1999,柴油生物分解之動力學研究,碩士論文,中原大學化學工程學系,pp. 4-19。
51. 童翔新、林仕明、王家祥、歐育憲、葉奕宏、陳欽昭,1999,石化污染土壤之生物復育影響因子研究,第十四屆廢棄物處理技術研討會論文集。
52. 張坤森、許博銘、張家豪、段繼梅,1999,以改良式電動力技術整治桃園縣鎘、鉛污染土壤之研究,第十四屆廢棄物處理技術研討會論文集。
53. 楊金鐘、薛威震,1999,利用電動力法結合楊離子交換樹脂反應牆現地整治受鉛銅污染土壤之研究,第十四屆廢棄物處理技術研討會論文集。
54. 楊金鐘、劉奇岳,1999,電動力-Fenton 法處理受三氯乙烯污染土壤之研究,第十四屆廢棄物處理技術研討會論文集。
55. 蔡在唐、簡全基、薩支高,2001,利用電動法復育受五氯酚污染土壤,NSC 89-2815-C-020-016R-E.
56. 蔡在唐、薩支高,2002,以電動法技術移動及降解土壤中BTEX,第四屆台灣環境資源永續發展研討會論文集。
57. 鄧順展,1999,不同之示蹤劑流速及砂質孔隙下探討對示蹤劑試驗推估柴油之影響,碩士論文,國立中興大學環境工程學系。
58. 熊楚強、王月,1996,電化學,文京圖書有限公司總經銷大揚出版社,台北。
59. 劉楨祺,1992,墾丁地區土壤之型態特性、化育作用與分類探討,碩士論文,國立台灣大學農業化學研究所,pp. 1-70。
60. 鄭孟嘉,2001,以電動方法處理受鎘、鉛污染土壤之研究,碩士論文,國立台灣大學化學工程學系,pp. 16-20。
61. 賴鴻裕,1999,台灣受油污染土壤油品種類與污染齡鑑定之研究,碩士論文,國立屏東科技大學環境工程與科學系。
62. 駱尚廉、楊萬發、曾四恭、吳先琪、林正芳、李公哲、曾迪華、張祖恩、張炳煌、蔡俊鴻,1997,環境保護辭典,中華民國環境工程學會。
63. 謝爵安,2000,利用土體加熱/氣提法與蒸氣注入/真空萃取法整治受甲基第三丁基醚與柴油污染土壤之研究-一維質量傳輸理論解析與驗證,碩士論文,國立中山大學環境工程研究所,pp. 1-54。
64. Acar, Y.B., R.J. Gale, J.T. Hamed, and G. Putnam. 1991. Acid/Base Distribution in Electrokinetic Soils Processing, Transport Research Record, 1288:23-34.
65. Acar, Y.B., R.J. Gale, A.N. Alshawabkeh, R.E. Marks, S. Puppala, M. Bricka, and R. Paker. 1995. Electrokinetic remediation:Basics and technology status, Journal of Hazardous Materials, 40:117-132.
66. American Petroleum Institute, 1985. Cadmium : Environmental and Community Health Impact, Washington. D. C. EA Report API137C.
67. Bohn, H.L., B.L. McNeal, and G.A. O’connor. 1985. Soil Chemistry, pp. 349-383.
68. Brian, C.K., and C.M. Aelion. 2000. Petroleum mass removal from low permeability sediment using air aparging/soil vapor extraction: impact of continuous or pulsed operation, Journal of Contaminant Hydrology, pp.367-383.
69. Bruell, C.J., B.A. Segall, and M.T. Walsh. 1992. Electro-osomtic Removal of Gasoline Hydrocarbons and TCE from Clay, Journal Environmental Engineers, ASCE.118(1). pp. 69-82.
70. Bruce, E.R. 2000. Extraction of hydrocarbon contamination from soils using accelerated solvent extraction.” Journal of Chromatography A, 874:217-214.
71. Byrne, J.A., and B.R. Eggins. 1998. Photoelectrochemistry of oxalate on particulate TiO2 electrodes, Journal of electroanalytical chemistry, 457:61-72.
72. Casagrande, L. 1948. Electro-osmosis in soils, Geotechnique, 1:1959-1977.
73. California Air Resources Board, 1984. Haagen-smit Laboratory, Project﹟MS-36-SHC.
74. Chiou, C.T., J.P. Louis, and H.F. Virgil. 1979. Physical Concept of Soil-Water Equilibria for Nonionic Organic Compounds, Science, 206:831-832.
75. Chiou, C.T., and D.S. Thomas. 1985. Soil Sorption of Organic Vapors and Effects of Humidity on Sorptive Mechanism and Capacity, Environ. Sci. Technol, 19:1196-1200.
76. Chiou, C.T. 1990. Roles of Organic Matter, Minerals and Moisture in Sorption of Nonionic Compounds and Pesticides by Soil, American Society of Agronomy and Soil Science Socirty of America, Madsion. WI53711 USA. pp.111-156.
77. Chiou, C.T., D.E. Kile, and D.W. Rutherford. 2000. Sorption of Selected Organic Compounds from Water to a Peat Soil and Its Humic-Acid and Humin Fractions Potential Sources of the Sorption Nonlinearity, Environ. Sci. Technol, 34:1254-1258.
78. Clark, R.J.H. 1973. Comprehensive Inorganic Chemistry, Pergamon press. 3:355.
79. Cole, M.G. 1994. assessment and remediation of petroleum contaminated site, CRC Press. Inc.
80. Dibble, J.T., and R. Bartha. 1979. Effect of Environmental Parameters on the Biodegradation of Oil Sludge, Appl Environ. Microbiol, 37:729-724.
81. Du, J.S. 1994. Kinetics of the Oxidative Degradation of Formadahyde with Electrogenerated Hydrogen Peroxide, National Science Council, NCS 83-0410-EH029-003.
82. Feng, D., and C. Aldrich. 2000. Sonochemical treatment of simulated soil contaminated with diesel, Advances in Environmental Research, pp. 103-112.
83. Fenton, J.H. 1984. Oxidation of Tartaric Acid in Presence of Iron, Journal of Chemical. Socience, 65:889-910.
84. Gabriele, G.Z., Roman, K. Arndt, R.E. Karl, and C. Kurt. 2001. Coupling of Hydraulic and Electric Gradients in sandy soils, 3rd Symposium and Status Reports on Electrokinetic Remediation .
85. Goldmann, T. 2001, Monitoring of Electrokinetic In—Situ — Decontamination, 3rd Symposium and Status Reports on Electrokinetic Remediation.
86. Hamnet, R. 1980. A study of the Process Involvoed in the Electro-reclamation of Contaminated Soils, MS thesis, University of Manchester. England.
87. Head, K.H. 1980. Manual of Soil Laboratory Testing, Volume 1:Soil Classification and Compaction Tests, Pentech Press Limited. Plymouth. Devon, pp. 249.
88. Isherwood, W.F. 1992. Enhancing Aquifer Cleanup with Reinjection. Paper Presented at National Ground Water Association Meeting, Houston. Texas. pp 4-6.
89. Jacob, H.M. 1994. Electrokinetic Transport Phenomena, AOSTRA. Canada.
90. Karichoff, S.D., S. Brown, and T.A. Scott. 1979. Sorption of hydrophobic pollutants on natural sediments, Water Res, 13:241-248.
91. Kenaga, E.E. 1980. Mobility of organic solvents in water saturated soil materials, Environ. Geol. Water Sci, 7:241-247.
92. Kesselman, J.M., N.S. Lewis, and M.R. Hoffmann. 1997. Photoelectrochemical Degradation of 4-Chlorocatechol at TiO2 Electeodes : Comparison between Sorption and Photoreactivity, Environmental Science Technology, 31:2298-2302.
93. King, N.J. 1978. The Oil Industry and Microbial Ecosystem, Heyden and Sons.
94. Kin, D.H., and A. Anderson. 1994. Photoelectrocatalytic for Degradation Formic Acid Using a Porous TiO2 Thin-Film Electrode, Environmental Science Technology, 28:479-483.
95. Kononova, M.M. 1966. Soil Organic Matter, Pergamon, Oxford.
96. Krauss, H., R. Zorn, R. Haus, and K. Czurda. 2001. Electroosmotic Transport in Fine Grained Sediments With Respect to Pore Throats, 3rd Symposium and Status Reports on Electrokinetic Remediation.
97. Lageman, R., and W. Pool. 2001. Thirteen Years Electro-Reclamation in the Netherlands, 3rd Symposium and Status Reports on Electrokinetic Remediation.
98. Lee, H.H., and J.W. Yeng. 2000. A New Method to Control Electrolytes pH by Circulation System in Electrokinetic Soil Remediation, Journal. Hazardous. Materials, B77, pp. 227-240.
99. Lin, T.F., J.C. Little, and W.W. Nazaroff. 1994. Transport and sorption of volatile organic compounds and water varpor within dry soil grains, Environ, Sci. Technol, 28:322-330.
100. Linsebigler, A.L., G. Lu, and J.T. Yates. 1995. Photocatalysis on TiO2 Surface : Principles, Mechanisms, and Selected Results, Chem.Rev, pp. 75-714.
101. Luc, Z., T.C. SchMidt, S.B. Haderlein, and M. Berg. 2002. Simultaneous Determination of Fuel Oxygenates and BTEX Using Direct Aqueous Lnjection Gas Chromatography Mass Spectrometry (DAI-GC/MS), Environ. Sci. Technol, 36:2054-2059.
102. Mackey, D., and C.D. McAuliff. 1988. Fate of hydrocarbons discharged at sea, Oil and Chemical Pollution, 5:1-19.
103. McBride, M.B. 1994. Environmental Chemistry of Soils, Oxford University Press, New York .
104. Mckeague, J.A., and J.H. Day. 1966. Dithionite and oxalate extractable Fe and Al as aids in differentiating various classes of soil, Can. J. Soil Sci, 46:13-22.
105. Mitchell, J.K. 1976. Fundamental of Soil Behavior, John Wiley and Sons, New York, pp. 422.
106. Nekrasova, M.A., V.G. Filonenko, and V.P. Zvolinski. 2001. Electrokinetic technologies in the informational system on rehabilitation methods of the environment, 3rd Symposium and Status Reports on Electrokinetic Remediation.
107. Oscar, P.P., and Y. Umetsu. 1999. ORP-monitored magnetite formation form aqueous solutions at low temperatures, Hydrometallurgy , 55:35-56.
108. Pamukcu, S. 1997. Electro-Chemical Technologies for In-Situ Restoration of Contaminated Subsurface Soils, Electronic J. Geotechnical. Engineering.
109. Peddie, C.C., S. Mavinic, and C.J. Jenkins. 1990. Use of ORP for Monitoring and Control of Aerobic sludge digestion, J. Envir. Eng.,116(3), 231-257.
110. Peter, R.G. 1992, Surfactant Screening of Diesel-Contaminated Soil, Hazardous Waste & Hazardous Materials, pp. 113-136.
111. Puppala, K.S., A.N. Alshawabkeh, Y.B. Acar, R.J. Gale, and M. Bricka. 1997. Enhanced Electrokinetic Remdiation of High Sorption Capacity Soil, Journal. Hazardous. Materials, 55:221-237.
112. Qianxinl, I.A., K.C. Mendelssohn, P.B. Nelson, and W.D. Walton. 2002. Salt Marsh Recovery and Oil Spill Remediation after In-Situ Burning: Effects of Water Depth and Burn Duration, Environ. Sci. Technol, 36:576-581.
113. Rajaroplan, V., and R.W. Peters. 1993. Chemical Oxidation Technology : Ultraviolet Light/Hydrogen Peroxide, Fenton Reagent, and Titanium Dioxide-Assisted Phoyocatalysis, Hazardous Waste ﹠Hazardous Materials, 10(2):107-149.
114. Reddy, C.M., and J.C. Quinn. 1999. GC-MS Analysis of Total Petroleum Hrdrocarbons and Polycyclic Aromatic Hrdrocarbons in Seawater Samples After the North Caps Oil Spill, pp. 126-135.
115. Reuss, F.F. 1808. Memoires de la Societe Imperiale des Naturolists deMoscow, Moscow, 2:327-337.
116. Rutherford, D.W., and C.T. Chiou. 1992. Effect of water saturation in soil organic matter on the partition of organic compounds, Environ. Sci. Technol, 26:965-970.
117. Scheffer, F., B. Meyer, and E.A. Niederbudde. 1959, Huminbildung unter Katalytischer Einwirkung Naturlich Vorkommender Eisenverbindungen in Modellversuch, Z. Pflanzenernähr Bodenkd.
118. Sun, C.C., and T.C. Chou. 1998. Kinetics and Mechanism of Photoelectrochemical Oxidation of Nitrite Ion by Using the Rutile Form of a TiO2/Ti Photoelectrode with High Electric Field Enhancement, Industrial Engineering Chemistry Research, 37:4207-4214.
119. Tomashov, N.D. 1961. Corrosion and Protection of Metal Structural Material, pp. 5-260.
120. Tyre, B.W., R.J. Watts, and G.C. Miller. 1991, Treatment of Four Biorefractory Contaminants in Soils Using Catalyzed Hydrogen Peroxide, J. Environ. Qual, 20:823.
121. Udell, K.S. 1994. NAS Lemoore JP-5 Cleanup Demonstration. Berkeley Environmental Restoration Center, University of California, Berkeley, 14p.
122. Van Doren, E.P. 1987. Electro-Osmotic Remediation of Contaminated Groundwater, M.S. Thesis, Civil Engineering Dept. University of Lowell.
123. WaI, P.K., and B.M. Voelker. 2002. Decomposition of Hydrogen Peroxide and Organic Compounds in the Presence of Dissolyed Iron and Ferrihydrite, Environ. Sci. Technol, 36:1467-1476.
124. Walter, W.L., and I.S. Wang. 1994. Remediation of Groundwater Aquifer by In- Situ Electrolysis and Electro-Osmosis, AWD Technologies, San Jose California.
125. Wang, T.S.C., S.W. Li, and P.M. Huang. 1978. Catalytic Polymerization of Phenolic Compounds by a Latosol,” Soil Science, 126:81-86.
126. Watt, R.J., R.H. Daniel, P.J. Alexander, and L.T. Amy. 2000, A Foundation for the Risk-Based Treatment of Gasoline-Contaminated Soils Using Modified Fenton’s Reaction, Journal of Hazardous Materials, B76, pp. 73-89.
127. Wen, C.H., Y.S. Lin, and Y.H. Hsieh. 2000, Electrokinetic Remediation of Trichloroethylene Contaminated Kaolinite, J. Chinese. Institute. Environ. Engineering, 10:279-289.
128. Wilson, J.T., C.G. Enfield, W.J. Dunlap, R.L.Cosby, D.A. Foster, and L.B. Baskin. 1981. Transport and Fate of Selected Organic Pollutants in a Sandy Soil, Journal Environmental Qual, 10:501-503.
129. Winsauer, W.O., and W.M. McCardell. 1953. Ionic Double-Layer Conductivity in Reservoir Rock, Petroleum Transactions, AIME, 198:129-133.
130. Yang, Y.J., M.A. Spencer, M.A. Mersmann, and T.M. Gates. 1995. Groundwater contaminant plume differentiation and source determination using BTEX concentration ratios, Groundwater, pp. 927-935.
131. Yeh, K.L., and R.S. Wu. 2000, Electro-Kinetic Removal Of Oil From A Contaminated Soil, Journal of the Chinese institute of Engineers, 23:61-69.
132. Zytner, R.G. 1994. Sorption of benzene, toluene, ethylbenzene and xylenes to various media, Journal of Hazardous Materials, 38:113-124.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top