跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/10 09:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:莊宗曄
研究生(外文):Tsung-Yeh Chuang
論文名稱:濺鍍銅銦鎵硒薄膜之硒處理研究
論文名稱(外文):Selenium treatment study of sputtered CuInGaSe thin film
指導教授:藍文厚
指導教授(外文):Wen-How Lan
學位類別:碩士
校院名稱:國立高雄大學
系所名稱:電機工程學系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:90
中文關鍵詞:熱處理濺鍍二極體銅銦鎵硒
外文關鍵詞:CIGSsputterheat treatmentdiode
相關次數:
  • 被引用被引用:6
  • 點閱點閱:546
  • 評分評分:
  • 下載下載:107
  • 收藏至我的研究室書目清單書目收藏:0
本研究使用銅銦鎵硒四元合金靶材,濺鍍成長CIGS薄膜,並搭配事後硒處理,在玻璃基板上沉積CIGS薄膜。研究濺鍍CIGS靶材時的功率、溫度、氣體流量,以及後續硒處理時的溫度等參數、氣體氣氛等。研究探討各項參數對於CIGS薄膜的影響。在適當參數的控制下,製作出p型的CIGS薄膜。並將p型CIGS薄膜製作於n型矽基板上,並對其電流-電壓、響應度等特性,作ㄧ探討。
In this dissertation, we study the deposition of Copper Indium Gallium Selenium ( CIGS ) thin-film on glass substrate by sputtering with followed selenium heat treatment. Deposition parameters such as power, temperature and gas flow were studied. Following heat treatment parameters such as temperature and gases were studied also. Film morphology, concentration and mobility for these films were analyzed. With controlled parameters, p-type CIGS thin-films can be achieved and p-n diode were fabricated by deposition the CIGS film on n-type Si substrate. The current-voltage behavior and spectral responsivity were characterized for this diode.
中文摘要……………………….……………………………………………………………...I
英文摘要……………………………………………………………………………..…….....II
致謝…………………………………………………………………………………………..III
目錄…………………………………………………………………………………………..IV
表目錄………………………………………………………………………………………..VI
圖目錄………………………………………………………………………………………..Ⅶ
第一章 導論…………………………………………………………………………………..1
1.1 背景介紹…………………………………………………………………………...1
1.2 CIGS薄膜太陽能電池之薄膜性質…………………………………………….....1
第二章 實驗研究之動機與文獻回顧………………………………………………………..4
2.1 CIGS薄膜太陽能電池背景……………………………………………………….4
2.2 CIGS太陽能電池…………………………………………………………………..6
2.3 CIS薄膜缺陷性質……………………………………………………………….....8
2.4 CIGS薄膜之問題……………………………………………………...............…..9
第三章 實驗設備與流程……………………………………………………………………15
3.1 製程設備………………………………………………………………………….15
3.1.1 磁控濺鍍系統……………………………………………………..…………15
3.1.2 硒處理熱蒸鍍系統………………………………………..…………………16
3.2 分析設備……………………………………………………………………….…17
3.2.1 霍爾量測(Hall Measurement)……………………………………………17
3.2.2 掃描式電子顯微鏡(Scanning Electron Microscope)…………..…………18
3.3 實驗流程……………………………………………………………………….....19
3.3.1 濺鍍四元銅銦鎵硒薄膜………………………………………..……………19
3.3.2 蒸鍍硒薄膜及事後硒處理………………………………………..………....21
第四章 實驗結果與討論…………………………………………………………………...32
4.1 濺鍍銅銦鎵硒四元合金靶材……………………………………….…………...32
4.1.1氬氣對銅銦鎵硒的影響………………………………………….............….32
4.1.2溫度對銅銦鎵硒的影響…………………………………………..………....33
4.2 硒處理對銅銦鎵硒的電性影響………………………………………………....33
4.2.1硒處理溫度的影響…………………………………………………………..33
4.2.2增加銦元素在銅銦鎵硒薄膜裡對硒處理的影響………………..………....35
4.3 熱處理氣氛對銅銦鎵硒薄膜的影響…………………………………….……....37
4.3.1空氣熱處理對銅銦鎵硒薄膜的影響………………………………………...37
4.3.2真空熱處理對銅銦鎵硒薄膜的影響……………………………..………….38
4.3.3氫氣氬氣混合氣體熱處理對銅銦鎵硒薄膜的影響………………..……….38
4.4 綜合空氣熱處理以及混合氣體熱處理對銅銦鎵硒薄膜的影響……………….40
4.5 銅銦鎵硒元件光響應度分析……………………………………….……………41
第五章 結論與未來討論…………………………………………………………………..73
參考文獻…………………………………………………………………………………......74
[1] R. Noufi, R. Axton, C. Herrington, Electronic properties versus composition of
thin films of CuInSe2,Appl. Phys. Lett., 45, pp.688-670 (1984)
[2] L.L.kazmerski,Photovoltaics:A review of cell and module technologies,Renewable
and sustainable energy review,1,pp.71-171 (1997)
[3]施敏,半導體元件物理與製作技術,交大出板社,pp.480-488(2007)
[4]http://www.tncg.gov.tw/enews/enews_history/show.asp?rowid=4465
[5] K. L. Chopra, P. D. Paulson and V. Dutta, Thin-film solar cells: Anoverview, Prog. Photovoltaics, 12, pp. 69-92 (2004)
[6] F. H. Karg, Development and manufacturing of CIS thin film solarmodules, Sol. Energy Mat. Sol. Cells, 66, pp. 645-653 (2001)
[7] K. Zweibel, Thin-films: past, present future, Prog. Photovoltaics, 3, pp. 279-293 (1995).
[8] M. Powalla and B. Dimmler, CIGS solar cells on the way to mass production: Process statistics of a 30 cm × 30 cm module line, Sol. Energ. Mat. Sol. Cells, 67, pp. 337-344 (2001)
[9] M. Powalla and B. Dimmler, Scaling up issues of CIGS solar cells,Thin Solid
Films, 361, pp. 540-546 (2000)
[10] M. L. Fearheiley, The phase-relations in the Cu,In,Se system and the growth of CuInSe2 single-crystals, Sol. Cells, 16, pp. 91-100 (1986)
[11] D. Schmid, M. Ruckh, F. Grunwald and H. W. Schock, Chalcopyrite defect chalcopyrite heterojunctions on the basic of CuInSe2, J. Appl.Phys., 73, pp. 2902-2909 (1993)
[12] S. H. Kwon, B. T. Ahn, S. K. Kim, K. H. Yoon and J. Song, Growth of CuIn3Se5 layer on CuInSe2 films and its effect on the photovoltaic properties of In2Se3/CuInSe2 solar cells, Thin Solid Films,323, pp.265-269 (1998)
[13] F. O. Adurodija, J. Song, S. D. Kim, K. H. Yoon and B. T. Ahn, Growth of CuInSe2 thin films by high vapour Se treatment ofco-sputtered Cu-In alloy in a graphite container, Thin Solid Films,338, pp. 13-19 (1999)
[14] S. Zweigart , D. Schmid, J. Kessler, H. Dittrich and H. W. Schock, Studies of the growth-mechanism of polycrystalline CuInSe2 thin-films prepared by a sequential progress, J. Cryst. Growth, 146,pp. 233-238 (1995)
[15] R. A. Mickelsen and W. S. Chen, Apparatus for forming thin-film heterojunction solar cells employing materials selected from the class of Ⅰ-Ⅲ-Ⅵ2 chalcopyrite compounds ,USA Patent No. 4,335,266, pp.275 (1983)
[16] V. Alberts, J. H. Schon and E. Bucher, Improved material properties of polycrystalline CuInSe2 prepared by rapid thermal treatment of metallic alloys in H2Se/Ar, J. Appl. Phys., 84, pp. 6881-6885 (1998)
[17] J. Kessler, C. Chityuttakan, J. Scholdstrom and L. Stolt, Growth of Cu(In,Ga)Se2 films using a Cu-poor/rich/poor sequence: substrate temperature effects, Thin Solid Films, 431, pp. 1-5 (2003)
[18] J. H. Schon, V. Alberts and E. Bucher, Structural and optical characterization of polycrystalline CuInSe2, Thin Solid Films, 301, pp.115-121 (1997)
[19] K. Zweibel, Thin-films: past, present future, Prog. Photovoltaics, 3, pp. 279-293 (1995).
[20] M. A. Contreras, B. Egaas, K. Ramanathan, J. Hiltner, A.Swartzlander, F.Hasoon and R. Noufi, Progress toward 20% efficiency in Cu(In,Ga)Se2 polycrystalline thin-film solar cells, Prog.Photovolt.7, pp. 311-316 (1999)
[21] M. Bar, W. Bohne, J. Rohrich, E. Strub, S. Linder, M. C. Lux-Steiner, and Ch.-H.Fischer, T.P.Niesen, F.Karg, Improvement of minority carrier diffusion length in Si by Al gettering, J. Appl. Phys., 7, pp38-58 (2004)
[22] W. Shockley, H. J. Queisser, Detailed Balance Limit of Efficiency of p-n Junction Solar Cells, J. Appl. Phys., 32, pp.510-519 (1961)
[23] Jenny Nelson, The Physics of Solar Cells, World Scientific publishing, pp.412-456 (2003)
[24] R. Noufi, R. Axton, C. Herrington, Electronic properties versus composition of thin films of CuInSe2,Appl. Phys. Lett., 45, pp.688-670 (1984)
[25] U.Rau, H.W.Schock, Electronic properties of Cu(In,Ga)Se2 heterojunction solar cells–recent achievements, current understanding, and future challenges, Appl. Phys., A 69, pp.139-146 (1999)
[26] L. L. Kazmerski, O.Jamjoum, P .J. Ireland, and S. K. Deb, Initial oxidation of
CuInSe2, J. Vac. Sci. Technol 19,pp.467-471(1981),
[27] R.Noufi, R.J.Matson, R.C.Powell and C.Herrington, The role of oxygen in CIS
thin film and CdS/CIS device, solar cell 16, pp.479-493(1986)
[28] D. Cahen, R.Noufi, Defect chemical explanation for the effect of air anneal on
CdS/CIS solar cell, Appl. Phys. Lett 54, pp.558-560 (1989),
[29] L. Kronik, D.Cahen, Effects of Sodium on Polycrystalline Cu(In,Ga)Se2 and Its
Solar Cell Performance, Adv. Mater. , pp.10-15 (1998)
[30] J. M.Shah,Y.-L. Li,”Experimental analysis and theoretical model for
anomalously high ideality factors(n>>2)in AlGaN/GaN p-n junction
diodes, Journal of Applied Physics 94,pp.2627-2630 (2003)
[32] R. A. Mickelsen and M. S. Chen,High photocurrent polycrystalline thin-film CdS/CuInSe solar cell, Appl. Phys. Lett., 36, pp.371-376(1980).
[33] S. P. Grindle, A. H. Clark, S. Rezaie-Serej, J. Mcneily, L. L. Mcneily, Growth of CuInSe2 by molecular beam epitaxy, Journal of Applied Physics, 51, pp.5464-5469 (1980).
[34] N. Romeo, V. Canevari, G. Sberveglieri, A. Bosio, Growth of Large-Grain CuInSe2 Thin Films by Flash-Evaporation and Sputtering. Solar Cells 16, pp.155-164 (1986).
[35] B. Pamplin and R. S. Feigelson, Spray pyrolysis of CuInSe2 and related ternary semiconducting compounds , Thin Solid Films, 60, pp.141-146(1979).
[37] K. Farg, Development and manufacturing of CIS thin film solar module. Solar Energy Materials and Solar Cells, 66, pp.645-649 (2001)
[38] Kushiy K, Ohshita M, Hara I, Tanaka Y, Sang B, Nagoya Y,Tachiyuki, M,Yamase O. Yield issue on the fabrication of 30cm×30cm-sized CIGS-based thin-film modules. Solar Energy Materials and Solar Cells, 75, pp.171-178 (2003)
[39] Mickelsen RA, Chen WS, Proceeding of the 15th IEEE Photovoltaic Specialists Conference, pp.800-804 (1981)
[40] Gabor AM, Tuttle JR, Albin DS, Contreras MA, Noufi R, Hermann AM., Characterization of heteroepitaxial CuIn3Se5 and CuInSe2 layers on Si substrates, Applied Physics Letters 65, pp.198-200 (1994)
[41] Tuttle JR, Contreras MA, Tennant A, Albin D, Noufi R., Proceeding of the 23rd IEEE Photovoltaic Specialists Conference, New York, pp.415-421 (1993)
[42] Kushiya K, Ohshita M, Hara I, Tanaka Y, Sang B, Nagoya Y, Tachiyuki M,Yamase O. Yield issue on the fabrication of 30cm×30cm-sized CIGS-based thin-film modules. Solar Energy Materials and Cells, 75, pp.171-178(2003)
[43] V. Alberts, R. Swanepoel and M. J. Witcomb, Material properties of CuInSe2 prepared by H2Se treatment of CuIn alloys, J. Mater.Sci.,33,pp.2919-2925(1998)
[44] H. Schon, V. Alberts and E. Bucher, Structural and optical characterization of polycrystalline CuInSe2, Thin Solid Films, 301, pp.115-121 (1997)
[45] S. Zweigart, D. Schmid, J. Kessler, H. Dittrich and H. W. Schock, Studies of the growth-mechanism of polycrystalline CuInSe2 thin-films prepared by a sequential progress, J. Cryst. Growth, 146, pp.233-238(1995)
[46] F. D. Dejene and V. Alberts, Influence of GaSe deposition temperature on the structural properties and in-depth compositional features of two-step grown Cu(In,Ga)Se2 thin films, J. Mater. Sci-Mater El., 14, pp. 89-95 (2003)
[47] M. Marudachalam, H. Hichri, R. Klenk, R. W. Birkmire, W. N. Shafarman and J. M. Schultz, Preparation of homogeneous Cu(InGa)Se2 films by selenization of metal precursors in H2Se atmosphere, Appl. Phys. Lett., 67, pp. 3978-3980 (1995)
[48] S.M. Rossnagel, J.J. Cuomo, and W.D. Westwood, Handbook of Plasma Technology, New Jersey: Noyes Publications, pp.146-158 (1982).
[49] B. Campman, Sputtering and Plasma Etching, NewYork: Wiley-Interscience, Chapter3 (1980).
[50] Quirk, M., J., Serda, Semiconductor Manufacturing Technology, Prentice Hall, chapter 12, (2001).
[51] L.J. van der Pauw, A Method of Measuring Specific Resistivity and Hall Effect of Discs of Arbitrary Shape, Philips Res. Repts. 20, pp.220-224 (1958).
[55] 陳力俊等編著,材料電子顯微鏡學,儀科中心出版, p.352-389 (1994)
[56] R. A. Sasala and J. R. Sites,” Annealing effects on individual loss mechanisms in CuInSe2 solar cells”, Solar Cells, 30 pp.101-107 (1990)
[57] K. Otte,,, G. Lippold, H. Neumannc, A. Schindler, Hydrogen in CuInSe2,
Journal of Physics and Chemistry of Solids 64 , pp.1641–1647 (2003)
[58] Leeor Kronik, David Cahen, Effects of Sodium on Polycrystalline
Cu(In,Ga)Se2 and Its Solar Cell Performance ,Adv. Mater,pp.10-27 (1998)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊