[1]李科杰,新編傳感器技術手冊,北京-國防工業出版社,2000年1月。
[2]賴耿,室內空氣污染,台灣復文興業股份有限公司,1994年12月。
[3]H. Masuda and K. Fukuda, “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina,” Science, Vol. 268, pp.1466-1468, 1995.
[4]Y. Kanamori, K. Hane, H. Sai and H. Yugami, “100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask,” Applied Physics Letters, Vol. 78, pp. 142-143, 2001.
[5]H. H. Yamada, M. Satoh and H. Asoh, “Highly ordered nanochannel-array architecture in anodic alumina,” Applied Physics Letters, Vol. 71, pp. 2770-2772, 1997.
[6]C. Y. Liu, A. Datta and Y. L. Wang, “Ordered anodic alumina nanochannels on focused-ion-beam-prepatterned aluminum surfaces,” Applied Physics Letters, Vol. 78, pp.120-122, 2000.
[7]T. Takashi, “Oxygen sensor,” Sensors and Actuators B, Vol. 14, pp. 109-110, 1994.
[8]G. Gorokh, A. Mozalev, D. Solovei, V. Khatko, E. Llobet and X. Correig, “Anodic formation of low-aspect-ratio porous alumina films for metal-oxide sensor application,” Electrochimica Acta, Vol. 52, pp. 1771-1780, 2006.
[9]C. Lu and Z. Chen, “High-temperature resistive hydrogen sensor based on thin nanoporous rutile TiO2 film on anodic aluminum oxide,” Sensors and Actuators B, Vol.140, pp. 109-115, 2009.
[10]Y. Shen, T. Yamazaki, Z. Liu, D. Meng and T. Kikuta, “Hydrogen sensing properties of Pd-doped SnO2 sputtered films with columnar nanostructures,” Thin Solid Films, Vol. 517, pp. 6119-6123, 2009.
[11]X. Wang, N. Miura and N. Yamazoe, “Study of WO3-based sensing materials for NH3 and NO detection,” Sensors and Actuators B, Vol. 66, pp. 74-76, 2000.
[12]S. Vallejos, V. Khatko, J. Calderer, I. Gracia, C. Cane, C. Cane, E. Llobet and X. Correig, “Micro-machined WO3-based sensors selective to oxidizing gases,” Sensors and Actuators B, Vol. 136, pp. 209-215, 2008.
[13]F. Keller, M. S. Hunter and D. L. Robinson, “Structural features of oxide coatings on aluminum,” Journal of The Electrochemical Society, Vol. 100, pp. 411-419, 1953.
[14]Y. C. Sui, B. Z. Cui, L. Mart?瀋ez, R. Perez and D. J. Sellmyer, “Pore structure, barrier layer topography and matrix alumina structure of porous anodic alumina film,” Thin Solid Films, Vol. 406, pp. 64-69, 2002.
[15]F. Li, L. Zhang, L. Zhang and R. M. Metzger, “On the growth of highly ordered pores in anodized aluminum oxide,” Chemistry of Materials, Vol. 10, pp. 2470-2480, 1998.
[16]S. K. Thamida and H. C. Chang, “Nanoscale pore formation dynamics during aluminum anodization,” Chaos, Vol. 12, pp. 240-251, 2002.
[17]J. P. O''Sullivan and G. C. Wood, “The morphology and mechanism of formation of porous anodic films on aluminium,” Proceedings of The Royal Society A, Vol. 317, pp. 511-543, 1970.
[18]G. E. Thompson, “Porous anodic alumina fabrication characterization and applications,“ Thin solid films, Vol. 297, pp. 192-201, 1997.
[19]O. Jessensky, F. M?刜ler and U. G?宄ele, “Self organized formation of hexagonal pore arrays in anodic alumina,” Applied Physics Letters, Vol. 72, pp. 1173-1175, 1998.
[20]A. V. Kukhta, G. G. Gorokh and E. E. Kolesnik, “Nanostructured alumina as a cathode of organic light-emitting devices,” Surface Science, Vol. 507, pp. 593-597, 2002.
[21]A. P. Li, F. M?刜ler, A. Birner, K. Nielsch and U. G?宄ele, “Hexagonal pore arrays with a 50–420 nm interpore distance formed by self-organization in anodic alumina,” Journal of Applied Physics, Vol. 84, pp. 6023-6026, 1998.
[22]S. Shingubara, O. Okino, Y. Sayama, H. Sakaue and T. Takahagi, “Ordered two-dimensional nanowire array formation using self-organized nanoholes of anodically oxidized aluminum,” Japanese Journal of Applied Physics, Vol. 36, pp. 7791-7795, 1997.
[23]M. N. Lin, C. Y. Liu, N. W. Liu, M. Y. Lai, C. Y. Peng, H. H. Wang, Y. L. Wang and M. T. Lin, “Fabrication of an ordered nanoparticle array with a nanoaperture membrane used as a contact-mask,” Nanotechnology, Vol. 17, pp. 315-319, 2006.
[24]Y. Matsui, K. Nishio and H. Masuda, “Highly ordered anodic porous alumina with 13-nm hole intervals using a 2D array of monodisperse nanoparticles as a template,” Small, Vol. 2, pp. 522-525, 2006.
[25]H. Chik and J. M. Xu, “Nanometric superlattices: non-lithographic fabrication, materials, and prospects,” Materials Science & Engineering R-reports, Vol. 43, pp. 103-138, 2004.
[26]T. T. Tang, C. Y. Kuo, R. P. Pan, J. M. Shieh and C. L. Pan, “Strong vertical alignment of liquid crystal on porous anodic aluminum oxide film,” Journal of Display Technology, Vol. 5, pp. 350-354, 2009.
[27]李冠霈,以多孔矽與奈米結構發展NOX 氣體微感測器,逢甲大學積體電路與通訊產業研發碩士專班,碩士論文,民國九十八年。[28]P. B. Weisz, “Effects of electronic charge transfer between adsorbate and solid on chemisorption and catalysis,” The Journal of Chemical Physics, Vol. 21, PP. 1531-1538, 1953.
[29]B. Ruhland, Th. Becker and G. M?刜ler, “Gas-kinetic interactions of nitrous oxides with SnO2 surfaces,” Sensors and Actuators B, Vol. 50, pp. 85-94, 1998.
[30]P. L. Andrew and J. R. Brian, “Temperature modulation in semiconductor gas sensing,” Sensors and Actuators B, Vol. 60, pp. 35-42, 1999.
[31]N. J. Choi, Y. S. Lee, J. H. Kwak, J. S. Park, K. B. Park, K. S. Shin, H. D. Park, J. C. Kim, J. S. Huh and D. D. Lee, “Chemical warfare agent sensor using MEMS structure and thick film fabrication method,” Sensors and Actuators B, Vol. 108, pp. 177-183, 2005.