跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.14) 您好!臺灣時間:2025/12/27 04:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉澤鈞
研究生(外文):Tze-chun Liu
論文名稱:具多孔性奈米陽極氧化鋁之氣體微感測器
論文名稱(外文):Gas Microsensors Based on Nanoporous Anodic Aluminum Oxide
指導教授:張興政賴啟智
指導教授(外文):Hsing-cheng ChangChi-chih Lai
學位類別:碩士
校院名稱:逢甲大學
系所名稱:自動控制工程所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:69
中文關鍵詞:氣體微感測器氧化鎢感測多孔性陽極氧化鋁微機電系統
外文關鍵詞:gas microsensorWO3 sensorAAOMEMS
相關次數:
  • 被引用被引用:5
  • 點閱點閱:541
  • 評分評分:
  • 下載下載:71
  • 收藏至我的研究室書目清單書目收藏:0
利用微機電系統(Microelectromechanical system, MEMS)技術,開發多孔性整合型奈米陽極氧化鋁之CO氣體微感測器,可在常溫環境下感測CO氣體。微感測元件整合多孔性陽極氧化鋁(Anodic aluminum oxide, AAO)、氣體感測薄膜、指叉狀感測電極、加熱器與溫度感測器於一晶片上,擁有體積小、精確度、靈敏度及穩定度高之優點。利用AAO多孔特性,使氧化鎢(WO3)感測薄膜,披覆在AAO上能提高接觸氣體總表面積,提升氣體感測響應,加熱器提高局部微感測器溫度,使整體感測器保持在最適當之感測氣體操作溫度,使用溫度與氣體微感測器,感測環境溫度,控制加熱器在不同溫度環境下所輸出能量,使感測器整體溫度,穩定控制在操作溫度下。利用鉑(Pt)感測薄膜提升靈敏度,設計指叉狀感測電極,提升氣體感測之靈敏度。研製多孔性陽極氧化鋁陽極處理系統,具即時電流監控弁遄A藉由不同電壓、溫度與蝕刻時間調變,控制AAO孔洞尺寸。結合AAO多孔基板之氧化鎢氣體感測薄膜,可有效增加感測薄膜的接觸面積。實驗探討不同CO氣體濃度、感測器靈敏度與溫度相關性;在一氧化碳濃度100 ~ 1000 ppm範圍,比較研發之元件與未使用AAO結構的感測器特性,本AAO結構感測器之氣體感測導致的電阻變化率最高可提升87.4 %。
A novel CO gas microsensor with tungsten oxide (WO3) sensing film on nanoporous anodic aluminum oxide (AAO) layer has been performed on anodic aluminum oxide template at operation temperature of 25 ℃. Based on microelectromechanical system (MEMS) technology, the microstructures are realized with porous AAO template, WO3 thin films, heaters, and interdigital temperature sensors. The platinum films were deposited to form the heaters, temperature sensors, and interdigital electrodes. To enhance sensitivity, the sputtered WO3 was grown on various nanoporous AAO structures. The study develops a novel porous anodic alumina processing system with a functional current feedback control module that provides control different conditions of voltage, temperature, and etching time to obtain uniform size of AAO film in the range from 20 nm to 104 nm. The self-ordered alumina membranes with a wide range of pore sizes are also achieved to increase sensing area of the microsensor. Experimental results are analyzed to find the relationship between the CO gas concentrations, the characterization of sensitivity and operational temperatures. Compared to traditional gas sensors, the designed CO gas microsensors show higher sensitivity by increasing variation of sensing resistance up to 87.4 % by sensing CO gas concentrations from 100 to 1000 ppm.
致謝 i
摘要 ii
Abstract iii
目錄 iv
圖目錄 vi
表目錄 ix
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 2
1.3 文獻探討 3
1.4 研究流程與架構 7
第二章 多孔性陽極氧化鋁與氣體微感測原理 8
2.1 多孔性氧化鋁成長機制 8
2.1.1 陽極氧化反應 9
2.1.2多孔性陽極氧化鋁生長及成核 10
2.1.3 高規則性排列孔洞陣列 15
2.2 金屬氧化物氣體感測器 20
2.2.1 蕭特基接觸 21
2.2.2 金屬氧化物之氣體感測機制 22
2.2.3 半導體金屬氧化物氣體感測器靈敏度分析 23
第三章 多孔性陽極氧化鋁實驗與微製程設計 25
3.1 多孔性陽極氧化鋁實驗規劃 25
3.1.1多孔性陽極氧化鋁製作與設備 25
3.2 微感測元件設計 28
3.3 光罩與蔽陰遮罩設計 31
3.3.1 微結構圖形設計 31
3.4 微感測元件製程規劃 33
第四章 量測與分析 38
4.1 陽極氧化鋁薄膜分析 38
4.1.1 第一次陽極氧化鋁時間對多孔性陽極氧化鋁之影響 38
4.1.2 去除第一次陽極氧化鋁時間對多孔性陽極氧化鋁之影響 42
4.1.3 電壓對氧化速率影響 47
4.1.4 擴孔與電壓對孔洞直徑關係 49
4.1.5 陽極處理之表面積提升率 51
4.2 氣體微感測元件製程 52
4.2.1 加熱器與溫度感測器微影製程 52
4.2.2 多孔性陽極氧化鋁薄膜製程 54
4.2.3 氧化鎢感測薄膜與感測電極製程 54
4.3 具多孔性奈米氣體感測器靈敏度分析與量測 55
4.3.1 量測架構 55
4.3.2 加熱器與溫度感測器特性分析 56
4.3.3 感測膜特性分析 59
第五章 結論 63
5.1 結論 63
5.2 未來發展 64
參考文獻 66
[1]李科杰,新編傳感器技術手冊,北京-國防工業出版社,2000年1月。
[2]賴耿,室內空氣污染,台灣復文興業股份有限公司,1994年12月。
[3]H. Masuda and K. Fukuda, “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina,” Science, Vol. 268, pp.1466-1468, 1995.
[4]Y. Kanamori, K. Hane, H. Sai and H. Yugami, “100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask,” Applied Physics Letters, Vol. 78, pp. 142-143, 2001.
[5]H. H. Yamada, M. Satoh and H. Asoh, “Highly ordered nanochannel-array architecture in anodic alumina,” Applied Physics Letters, Vol. 71, pp. 2770-2772, 1997.
[6]C. Y. Liu, A. Datta and Y. L. Wang, “Ordered anodic alumina nanochannels on focused-ion-beam-prepatterned aluminum surfaces,” Applied Physics Letters, Vol. 78, pp.120-122, 2000.
[7]T. Takashi, “Oxygen sensor,” Sensors and Actuators B, Vol. 14, pp. 109-110, 1994.
[8]G. Gorokh, A. Mozalev, D. Solovei, V. Khatko, E. Llobet and X. Correig, “Anodic formation of low-aspect-ratio porous alumina films for metal-oxide sensor application,” Electrochimica Acta, Vol. 52, pp. 1771-1780, 2006.
[9]C. Lu and Z. Chen, “High-temperature resistive hydrogen sensor based on thin nanoporous rutile TiO2 film on anodic aluminum oxide,” Sensors and Actuators B, Vol.140, pp. 109-115, 2009.
[10]Y. Shen, T. Yamazaki, Z. Liu, D. Meng and T. Kikuta, “Hydrogen sensing properties of Pd-doped SnO2 sputtered films with columnar nanostructures,” Thin Solid Films, Vol. 517, pp. 6119-6123, 2009.
[11]X. Wang, N. Miura and N. Yamazoe, “Study of WO3-based sensing materials for NH3 and NO detection,” Sensors and Actuators B, Vol. 66, pp. 74-76, 2000.
[12]S. Vallejos, V. Khatko, J. Calderer, I. Gracia, C. Cane, C. Cane, E. Llobet and X. Correig, “Micro-machined WO3-based sensors selective to oxidizing gases,” Sensors and Actuators B, Vol. 136, pp. 209-215, 2008.
[13]F. Keller, M. S. Hunter and D. L. Robinson, “Structural features of oxide coatings on aluminum,” Journal of The Electrochemical Society, Vol. 100, pp. 411-419, 1953.
[14]Y. C. Sui, B. Z. Cui, L. Mart?瀋ez, R. Perez and D. J. Sellmyer, “Pore structure, barrier layer topography and matrix alumina structure of porous anodic alumina film,” Thin Solid Films, Vol. 406, pp. 64-69, 2002.
[15]F. Li, L. Zhang, L. Zhang and R. M. Metzger, “On the growth of highly ordered pores in anodized aluminum oxide,” Chemistry of Materials, Vol. 10, pp. 2470-2480, 1998.
[16]S. K. Thamida and H. C. Chang, “Nanoscale pore formation dynamics during aluminum anodization,” Chaos, Vol. 12, pp. 240-251, 2002.
[17]J. P. O''Sullivan and G. C. Wood, “The morphology and mechanism of formation of porous anodic films on aluminium,” Proceedings of The Royal Society A, Vol. 317, pp. 511-543, 1970.
[18]G. E. Thompson, “Porous anodic alumina fabrication characterization and applications,“ Thin solid films, Vol. 297, pp. 192-201, 1997.
[19]O. Jessensky, F. M?刜ler and U. G?宄ele, “Self organized formation of hexagonal pore arrays in anodic alumina,” Applied Physics Letters, Vol. 72, pp. 1173-1175, 1998.
[20]A. V. Kukhta, G. G. Gorokh and E. E. Kolesnik, “Nanostructured alumina as a cathode of organic light-emitting devices,” Surface Science, Vol. 507, pp. 593-597, 2002.
[21]A. P. Li, F. M?刜ler, A. Birner, K. Nielsch and U. G?宄ele, “Hexagonal pore arrays with a 50–420 nm interpore distance formed by self-organization in anodic alumina,” Journal of Applied Physics, Vol. 84, pp. 6023-6026, 1998.
[22]S. Shingubara, O. Okino, Y. Sayama, H. Sakaue and T. Takahagi, “Ordered two-dimensional nanowire array formation using self-organized nanoholes of anodically oxidized aluminum,” Japanese Journal of Applied Physics, Vol. 36, pp. 7791-7795, 1997.
[23]M. N. Lin, C. Y. Liu, N. W. Liu, M. Y. Lai, C. Y. Peng, H. H. Wang, Y. L. Wang and M. T. Lin, “Fabrication of an ordered nanoparticle array with a nanoaperture membrane used as a contact-mask,” Nanotechnology, Vol. 17, pp. 315-319, 2006.
[24]Y. Matsui, K. Nishio and H. Masuda, “Highly ordered anodic porous alumina with 13-nm hole intervals using a 2D array of monodisperse nanoparticles as a template,” Small, Vol. 2, pp. 522-525, 2006.
[25]H. Chik and J. M. Xu, “Nanometric superlattices: non-lithographic fabrication, materials, and prospects,” Materials Science & Engineering R-reports, Vol. 43, pp. 103-138, 2004.
[26]T. T. Tang, C. Y. Kuo, R. P. Pan, J. M. Shieh and C. L. Pan, “Strong vertical alignment of liquid crystal on porous anodic aluminum oxide film,” Journal of Display Technology, Vol. 5, pp. 350-354, 2009.
[27]李冠霈,以多孔矽與奈米結構發展NOX 氣體微感測器,逢甲大學積體電路與通訊產業研發碩士專班,碩士論文,民國九十八年。
[28]P. B. Weisz, “Effects of electronic charge transfer between adsorbate and solid on chemisorption and catalysis,” The Journal of Chemical Physics, Vol. 21, PP. 1531-1538, 1953.
[29]B. Ruhland, Th. Becker and G. M?刜ler, “Gas-kinetic interactions of nitrous oxides with SnO2 surfaces,” Sensors and Actuators B, Vol. 50, pp. 85-94, 1998.
[30]P. L. Andrew and J. R. Brian, “Temperature modulation in semiconductor gas sensing,” Sensors and Actuators B, Vol. 60, pp. 35-42, 1999.
[31]N. J. Choi, Y. S. Lee, J. H. Kwak, J. S. Park, K. B. Park, K. S. Shin, H. D. Park, J. C. Kim, J. S. Huh and D. D. Lee, “Chemical warfare agent sensor using MEMS structure and thick film fabrication method,” Sensors and Actuators B, Vol. 108, pp. 177-183, 2005.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top