跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/04 14:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:廖珮嵐
研究生(外文):Pei-lan Liao
論文名稱:Cu-Sn-Cu覆晶結構之陰極銅箔消耗與電遷移失效模式
論文名稱(外文):Flip-Chip Cu Pad Consumed at the Cathode Side and Electromigration (EM) Failure Modes
指導教授:劉正毓
學位類別:碩士
校院名稱:國立中央大學
系所名稱:化學工程與材料工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:40
中文關鍵詞:失效模式覆晶電遷移
外文關鍵詞:flip-chipelectromigrationfailure modes
相關次數:
  • 被引用被引用:3
  • 點閱點閱:282
  • 評分評分:
  • 下載下載:56
  • 收藏至我的研究室書目清單書目收藏:0
使用Cu/Sn/Cu覆晶式結構研究,觀察電遷移效應下,於不同電流密度對陰極銅箔消耗、界面的介金屬化合物之影響,實驗溫度分別為125、100與80℃,電流密度的範圍在1~6×103A/cm2通過Cu/Sn/Cu試片進行通電實驗,4天後,經電遷移效應,陰極端銅箔消耗與電流密度成一次方正比的關係,得到修正的銅箔消耗動力學關係式為Δh=Bexp( )tnj,藉由此式,可預估不同電流密度下,陰極銅箔消耗的情形。此外,於低溫55 ℃,電流密度約5.5×103 A/cm2通過試片10天,陰、陽極兩端觀察到不同的現象,電子流入端,銅箔消耗非常的嚴重,另一端,也是遠離電子流入端,孔洞在IMC(介金屬化合物)/solder界面的銲料中形成,而陽極端,Kirkendall voids於Cu3Sn/Cu界面被發現,陰極Cu3Sn/Cu界面則無觀察到。
To study electromigration (EM), flip-chip Cu-Sn-Cu structures were prepared. This study investigates on effect of current density induced Cu pad consumption at the cathode side and interfacial metallic compound. EM test were carried under three temperatures, which are 80, 100 and 125 ℃ for 4 days, respectively. Current densities were 1~6×103 A/cm2 passed through the solder bumps. After EM test, the Cu consumption increased with current density linearly. Therefore, we modified kinetics of the Cu consumption equation as Δh=Bexp( )tnj. By this expression, the Cu consumption will be predicted under any current density. Besides, Solder bump were under 5×103 A/cm2 at 55 ℃ for 10 days. Different phenomenons were observed at the both side. Cu pad consumed very seriously at the current entry point. On another corner which distant from the current entry point, voids formed at the IMC/solder cathode interface. At the anode side, the Kirkendall voids were found to occur at the anode Cu3Sn/Cu interface. No Kirkendall voids found at the cathode side.
目 錄 頁數
目錄...................................................i
圖目錄.................................................iii
第一章 序論............................................1
第二章 文獻回顧........................................3
2.1 電遷移的原理....................................3
2.1.1電遷移的通量(flux)方程式......................3
2.1.2平均失效時間(mean time to failure,MTTF)......4
2.2 電遷移效應下的失效模式(EM failure modes)........5
2.2.1陰極端的孔洞..................................5
2.2.2陰極端金屬基材的溶解..........................8
2.3 Cu3Sn/Cu界面生成的Kirkendall voids..............10
2.4 純錫銲料裡的電遷移現象..........................11
第三章 實驗步驟與方法..................................13
3.1 試片製作........................................13
3.2 試片觀察........................................15
3.2.1背向電子顯微鏡................................16
3.2.2場發射電子微探儀..............................16
3.2.3聚焦離子束....................................17
第四章 實驗結果與討論..................................18
4.1 陰極端的銅箔消耗................................18
4.1.1銅箔消耗的動力學方程式........................24
  4.1.2銅箔消耗的機制................................26
4.2 陰陽極介金屬化合物的生長........................28
4.2.1陰極介金屬化合物..............................28
4.2.2陽極介金屬化合物..............................29
4.3 電遷移所導致的失效模式..........................32
4.3.1陰極的兩種失效模式............................33
4.3.2陽極的失效模式................................36
第五章 結論............................................38
參考文獻...............................................39
1. J. H. Lau Flip, Chip Technologies. New York: McGraw-Hill; 1996.
2. The National Technology Roadmap for Semiconductors. San Jose, CA: Semiconductor Industry Association; 2003.
3. K. Zeng, R. Stierman, T.-C. Chiu, D. Edwards, K. Ano, and K. N. Tu, J. Appl. Phys. 97, 024508 (2005)
4. T. Laurila, V. Vuorinen, and J. K. Kivilahti, Mater. Sci. Eng. R49 1~60 (2005)
5. T. H. Chuang, S. F. Yen, and H. M. Wu, J. Electron. Mater. 35, No. 2 (2006)
6. P. T. Vianco, J. A. Rejent, P. F. Hlava, J. Electron. Mater. 33,991 (2004)
7. H. Gan and K. N. Tu, J. Appl. Phys. 97, 063514(2005)
8. G. A. Rinne, Electronic Components and Technology Conference(2004)
9. A. S. Oates, Appl. Phys. Lett. 66, 1475(1995)
10. J. J. Clement, J. Appl. Phys. 82, 5991(1997)
11. M. Shatzkes and J. R. Lloyd, J. Appl. Phys. 59, 3890(1986)
12. M. Ding, G. Wang, B. Chao, P. S. Ho, P. Su and T. Uehling, J. Appl. Phys. 99, 094906(2006)
13. E. C. C. Yeh, W. J. Choi, and K. N. Tu, P. Elenius, and H. Balkan, Appl. Phys. Lett. 80, 580(2002)
14. C. Y. Liu, C. Chen, and K. N. Tu, J. Appl. Phys. 88, 10(2000)
15. Y. C. Hu, Y. H. Lin, C. R. Kao, and K. N. Tu, J. Mater. Res. 18, 2544, (2003)
16. K. Zeng, R. Stierman, T. C. Chiu, D. Edwards, K. Ano, and K. N. Tu, J. Appl. Phys. 97, 024508 (2005)
17. 謝育忠, 王祥文, 蔡瑞云, 高振宏, 國科會報告
18. C. Y. Liu, Lin Ke, Y. C. Chuang, and S. J. Wang, J. Appl. Phys. 100, 083702(2006)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top