|
1. 經濟部能源局, 2010製造業能源查核年報. 經濟部能源局, 2011. http://emis.erl.itri.org.tw/book/ecpaper/list.asp 2. Change, U.N.F.C.o.C., KYOTO PROTOCOL TO THE UNITED NATIONS FRAMEWORK CONVENTION ON CLIMATE CHANGE. UNITED NATIONS, 1998. 3. Huntzinger, D.N. and T.D. Eatmon, A life-cycle assessment of Portland cement manufacturing: comparing the traditional process with alternative technologies. Journal of Cleaner Production, 2009. 17(7): p. 668-675. 4. Wang, Q., P. Yan, and J. Feng, A discussion on improving hydration activity of steel slag by altering its mineral compositions. Journal of Hazardous Materials, 2011. 186(2-3): p. 1070-1075. 5. Iacobescu, R.I., et al., Valorisation of electric arc furnace steel slag as raw material for low energy belite cements. Journal of Hazardous Materials, 2011. 196(0): p. 287-294. 6. Wang, Q., P. Yan, and G. Mi, Effect of blended steel slag–GBFS mineral admixture on hydration and strength of cement. Construction and Building Materials, 2012. 35(0): p. 8-14. 7. World Steel Association. 8. Escalante, J.I., et al., Reactivity of blast-furnace slag in Portland cement blends hydrated under different conditions. Cement and Concrete Research, 2001. 31(10): p. 1403-1409. 9. Mahieux, P.Y., J.E. Aubert, and G. Escadeillas, Utilization of weathered basic oxygen furnace slag in the production of hydraulic road binders. Construction and Building Materials, 2009. 23(2): p. 742-747. 10. Kumar, S., et al., Mechanical activation of granulated blast furnace slag and its effect on the properties and structure of portland slag cement. Cement and Concrete Composites, 2008. 30(8): p. 679-685. 11. Osborne, G.J., Durability of Portland blast-furnace slag cement concrete. Cement and Concrete Composites, 1999. 21(1): p. 11-21. 12. McLellan, B.C., et al., Costs and carbon emissions for geopolymer pastes in comparison to ordinary portland cement. Journal of Cleaner Production. 19(9-10): p. 1080-1090. 13. George, W., Determination of the expansion force of coarse steel slag aggregate. Construction and Building Materials, 2010. 24(10): p. 1961-1966. 14. Zhang, T., et al., Preparation of high performance blended cements and reclamation of iron concentrate from basic oxygen furnace steel slag. Resources, Conservation and Recycling, 2011. 56(1): p. 48-55. 15. Song, S. and H.M. Jennings, Pore solution chemistry of alkali-activated ground granulated blast-furnace slag. Cement and Concrete Research, 1999. 29(2): p. 159-170. 16. Abd El.Aziz, M., et al., Hydration and durability of sulphate-resisting and slag cement blends in Caron's Lake water. Cement and Concrete Research, 2005. 35(8): p. 1592-1600. 17. Adaptation to climate change. The European cement ASSociation, 2014. 18. Pade, C. and M. Guimaraes, The CO2 uptake of concrete in a 100 year perspective. Cement and Concrete Research, 2007. 37(9): p. 1348-1356. 19. Penttala, V., Concrete and Sustainable Developmen. ACI Materials Journal, 1997(94): p. 416-419. 20. A#westeur048#tcin, P.-C., Cements of yesterday and today: Concrete of tomorrow. Cement and Concrete Research, 2000. 30(9): p. 1349-1359. 21. ICF, Climate Wiser – Cement Industry Reporting Plan and Wordbook. CF consulting for U.S. Environmental Protection Agency, 1999. 1. 22. IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories. 2015. 23. 蘇茂豐、陳立, 電弧煉鋼爐碴之資源化現況及未來展望. 工業汙染防治, 2005. 93: p. 27-51. 24. 松田博, 高炉水砕スラグ「土工用材料としての技術資料」. 鐵鋼碴スラグ, 2009. 25. RAKESH KUMAR, S.K., S. BADJENA, and S.P. MEHROTRA, Hydration of mechanically activated granulated blast furnace slag. METALLURGICAL AND MATERIALS TRANSACTIONS B, 2005. 36B: p. 873-883. 26. Tossavainen, M., et al., Characteristics of steel slag under different cooling conditions. Waste Management, 2007. 27(10): p. 1335-1344. 27. Prezzi, I.Z.Y.a.M., Chemical, Mineralogical, and Morphological Properties of Steel Slag. Advances in Civil Engineering, 2011. 2011: p. 13. 28. Roy, D.M., Alkali-activated cements Opportunities and challenges. Cement and Concrete Research, 1999. 29(2): p. 249-254. 29. Palomo, A., M.W. Grutzeck, and M.T. Blanco, Alkali-activated fly ashes: A cement for the future. Cement and Concrete Research, 1999. 29(8): p. 1323-1329. 30. Povindar K. Mehta, P.J.M.M., Concrete: structure, properties, and materials. Prentice-Hall, 1993. 31. Teng, S., T.Y.D. Lim, and B. Sabet Divsholi, Durability and mechanical properties of high strength concrete incorporating ultra fine Ground Granulated Blast-furnace Slag. Construction and Building Materials, 2013. 40(0): p. 875-881. 32. Luo, R., et al., Study of chloride binding and diffusion in GGBS concrete. Cement and Concrete Research, 2003. 33(1): p. 1-7. 33. M.L, B., Properties of sustainable concrete containing fly ash, slag and recycled concrete aggregate. Construction and Building Materials, 2009. 23(7): p. 2606-2613. 34. Siddique, R. and R. Bennacer, Use of iron and steel industry by-product (GGBS) in cement paste and mortar. Resources, Conservation and Recycling, 2012. 69(0): p. 29-34. 35. Shi, C. and R.L. Day, Some factors affecting early hydration of alkali-slag cements. Cement and Concrete Research, 1996. 26(3): p. 439-447. 36. Shi, C., Strength, pore structure and permeability of alkali-activated slag mortars. Cement and Concrete Research, 1996. 26(12): p. 1789-1799. 37. Collins, F. and J.G. Sanjayan, Effect of pore size distribution on drying shrinking of alkali-activated slag concrete. Cement and Concrete Research, 2000. 30(9): p. 1401-1406. 38. Yuan, X.-h., et al., Shrinkage compensation of alkali-activated slag concrete and microstructural analysis. Construction and Building Materials, 2014. 66(0): p. 422-428. 39. sidbey Mindess, J.F.y., David Darwin, Concrete, 2nd Edition. Prentice-Hall, 2003. 40. Kourounis, S., et al., Properties and hydration of blended cements with steelmaking slag. Cement and Concrete Research, 2007. 37(6): p. 815-822. 41. Bonenfant, D., et al., Molecular analysis of carbon dioxide adsorption processes on steel slag oxides. International Journal of Greenhouse Gas Control, 2009. 3(1): p. 20-28. 42. Li, J., et al., Structural characteristics and hydration kinetics of modified steel slag. Cement and Concrete Research, 2011. 41(3): p. 324-329. 43. Wee, T.H., A.K. Suryavanshi, and S.S. Tin, Influence of aggregate fraction in the mix on the reliability of the rapid chloride permeability test. Cement and Concrete Composites, 1999. 21(1): p. 59-72. 44. Muhmood, L., S. Vitta, and D. Venkateswaran, Cementitious and pozzolanic behavior of electric arc furnace steel slags. Cement and Concrete Research, 2009. 39(2): p. 102-109. 45. Monshi, A. and M.K. Asgarani, Producing Portland cement from iron and steel slags and limestone. Cement and Concrete Research, 1999. 29(9): p. 1373-1377. 46. Das, B., et al., An overview of utilization of slag and sludge from steel industries. Resources, Conservation and Recycling, 2007. 50(1): p. 40-57. 47. Juckes, L.M., The volume stability of modern steelmaking slags. Processing and Extractive Metallurgy 2003. 112(3): p. 177-197. 48. H. Y. Poh, Gurmel S. Ghataora, and Nizar Ghazireh, Soil Stabilization using Basic Oxygen Steel Slag Fines. Journal of Materials in Civil Engineering, 2006. 18(2): p. 229-240. 49. Shen, D.-H., C.-M. Wu, and J.-C. Du, Laboratory investigation of basic oxygen furnace slag for substitution of aggregate in porous asphalt mixture. Construction and Building Materials, 2009. 23(1): p. 453-461. 50. Shi, C., Steel Slag—Its Production, Processing, Characteristics, and Cementitious Properties. Journal of Materials in Civil Engineering, 2004. 16(3): p. 230-236. 51. Xuequan, W., et al., Study on steel slag and fly ash composite Portland cement. Cement and Concrete Research, 1999. 29(7): p. 1103-1106. 52. Wang, Q. and P. Yan, Hydration properties of basic oxygen furnace steel slag. Construction and Building Materials, 2010. 24(7): p. 1134-1140. 53. 江玄政, 生命週期評估手冊 (ISO 14000 系列). 財團法人臺灣產業服務基金會/財團法人中技社, 2001. 54. Kofoworola, O. and S. Gheewala, Environmental life cycle assessment of a commercial office building in Thailand. The International Journal of Life Cycle Assessment, 2008. 13(6): p. 498-511. 55. Bastien Girod, P.d.H., Roland W. Scholz, Consumption-as-usual instead of ceteris paribus assumption for demand - Integration of potential rebound effects into LCA. The International Journal of Life Cycle Assessment, 2010. 16(1): p. 3-11. 56. Li, Z., A new life cycle impact assessment approach for buildings. Building and Environment, 2006. 41(10): p. 1414-1422. 57. McNeil, K. and T.K. Kang, Recycled Concrete Aggregates: A Review. International Journal of Concrete Structures and Materials, 2013. 7(1): p. 61-69. 58. Pehnt, M., Dynamic life cycle assessment (LCA) of renewable energy technologies. Renewable Energy, 2006. 31(1): p. 55-71. 59. Jolin, L.-S.B.a.M., Shotcrete Boiled Water Absorption. Shotcrete, 2010: p. 12-17. 60. Quercia , G.S., P.; H#westeur061#sken, G.; Brouwers, H.J.H., Chloride intrusion and freeze-thaw resistance of self- compacting concrete with two different nano-SiO2 Bauhaus-University Weimar, Germany 2012: p. 123-136. 61. Orlova, N.V.W., J C. Rehani, M. Koretsky, M D, The study of chloride ion migration in reinforced concrete under cathodic protection. Oregon Department of Transportation, 1999. 62. Xie, J., et al., Recycling of basic oxygen furnace slag in asphalt mixture: Material characterization &; moisture damage investigation. Construction and Building Materials, 2012. 36(0): p. 467-474. 63. Samet, B. and M. Chaabouni, Characterization of the Tunisian blast-furnace slag and its application in the formulation of a cement. Cement and Concrete Research, 2004. 34(7): p. 1153-1159. 64. Chen, C., et al., LCA allocation procedure used as an incitative method for waste recycling: An application to mineral additions in concrete. Resources, Conservation and Recycling, 2010. 54(12): p. 1231-1240.
|