跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/06 07:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡嘉榮
研究生(外文):Tsai, Chia-Jung
論文名稱:混合轉爐石粉與高爐石粉膠凝特性之研究
論文名稱(外文):Properities of Ground-Granulated Basic Oxygen Furnace Slag and Blast-Furnace Slag Mixture as Cementitious Materials
指導教授:黃然黃然引用關係
指導教授(外文):Huang, Ran
口試委員:張大鵬徐輝明葉為忠張建智
口試委員(外文):Chang, Ta-PengHsu, Hui-MiYeih, Wei-chungChang, Jiang-Jhy
口試日期:2015-01-17
學位類別:博士
校院名稱:國立臺灣海洋大學
系所名稱:材料工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:103
語文別:中文
論文頁數:96
中文關鍵詞:轉爐石高爐石力學性質耐久性質
外文關鍵詞:basic oxygen furnace slagblast-furnace slagmechanicaldurability
相關次數:
  • 被引用被引用:10
  • 點閱點閱:809
  • 評分評分:
  • 下載下載:160
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要根據ASTM C821 - 09及ASTM C595/C595M - 13進行轉爐石粉 和高爐石粉混合水泥符合度分析,並由試驗結果證實轉爐石粉作為高爐石粉的鹼活化劑,並證實40%:60%及50%:50%(轉爐石粉:高爐石粉)兩組混合比可符合ASTM C595水硬性混合水泥標準。混合水泥漿體開始會與轉爐石粉成分中CaO會與水產生劇烈反應形成Ca(OH)2,所以當轉爐石粉比例增加時凝結速度會越快,而相對的轉爐石粉用量不足的則會降低凝結速度。另外由SEM得知早期7天到28天抗壓強度來源是C-A-S-H膠體也許Ca(OH)2和SiO2與Al2O3反應生成,而56天後Mg(OH)2也加入反應生成C-M-A-S-H膠體所以使得結構更加緻密,導致後其強度明顯提升,而混合水泥混合比例30%:70%, 40%:60%及50%:50%(轉爐石粉:高爐石粉)三個組合中主要以40%:60%表現最好可達到抗壓強度的80%~90 %。
另外在耐久性方面本研究是參考ASTM D4404、ASTM C1202、CNS 3763及ASTM C418等標準進行,並由RCPT試驗結果得知混合水泥混凝土的累積通過電量皆明顯低於普通混凝土,其中以配比40%:60%表現最佳,三組水膠比的累積通過電量分別為920、1623及2199 C相較於普通混凝土約只有其累積通過電量的22 ~ 34 %。耐磨耗試驗結果得知混合水泥混凝土的磨損係數,明顯皆高於普通混凝土約1.5 ~ 2.5倍。壓汞試驗結果得知混合水泥混凝土的總累積孔隙體積,皆比普通混凝土高約1.1~1.8倍左右,其中配比40%:60%表現也是最佳,三組水膠比的總累積孔隙體積分別為7.23、8.7及10.38 ml/g,相較於普通混凝土僅多出10 ~ 16 %。透水試驗結果得知混合水泥混凝土的滲透率,皆高於普通混凝土約48~80倍左右,配比40%:60%三組水膠比的滲透率分別為3.9、5.98及6.27 %,相較於普通混凝土約高48~66倍,而這些結果說明在混合水泥混凝土耐久性方面以轉爐石粉:高爐石=40%:60%的效果最好,然而相較於普通混凝土僅有抗氯離子滲透能力方面優於普通混凝土。

This study analyzed the feasibility of ground-granulated blast-furnace slag (GGBS) and ground-granulated basic oxygen furnace slag (GGBOS) blended cements according to the standard specifications of ASTM C821 and ASTM C595. Through tests, this study verified that GGBOS could be used as alkali activators for GGBS and that the mixture proportions of S4I6 and S5I5 correspond with the physical and chemical requirements specified in ASTM C595/C595M - 13. Among S3I7, S4I6, and S5I5, the mixture proportion of S4I6 exhibited the highest performance by reaching 90% of the compressive strength of ordinary Portland cement mortar.
The durability in this study is defined as ASTM D4404 mercury test method, ASTM C1202 rapid rate of ion penetration test, CNS 3763 permeability test and ASTM C418 abrasion test. RCPT test shows cumulative electricity in GGBS and GGBOS blended cement are significantly lower than in the OPC, while the best three performance in S4I6 are 920 C,1623 C and 2199 C, only about 22 ~ 34 % comparing to the OPC. Abrasion test results that blended cement concrete abrasion coefficients are about 1.5 to 2.5 times higher than OPC. Mercury test results represents that the total cumulative pore volums is about 1.1 to 1.8 times higher than OPC. The best total cumulative pore volume are 7.23 ml/g, 8.7 ml/g and 10.38 ml/g in S4I6 , which only about 10 to 16 percent age higher than OPC. The permeability of blended concrete are significantly higher than the permeability of OPC about 48 to 80 times in code CNS 3763 permeability test, of which the best-performing in S4I61 are 3.9 %, 5.98 % and 6.27 %, 48 to 66 times comparing to OPC. These results represent that the blended cement concrete have good resistance to chloride ion penetration, but obviously the resistance to abrasion are below OPC.

摘要 I
Abstract II
目次 III
圖次 VII
表目錄 XII
第一章 緒論 1
1.1 研究動機 1
1.2 研究目的 2
1.3 研究方法 3
第二章 文獻回顧 5
2.1卜特蘭水泥製程與對環境的衝擊 5
2.1.1 二氧化碳排放對環境的衝擊 5
2.1.2 卜特蘭水泥製程 7
2.1.3 卜特蘭水泥製程對碳排放之影響 8
2.2 鋼鐵生產及爐石(碴)產出與再利用 11
2.2.1 鋼鐵生產及爐石產量 11
2.2.2 不同爐石(碴)產出 12
2.2.3 高爐石粉特性與應用 16
2.2.4 轉爐石之特性 18
2.3 生命週期評估 19
第三章 試驗計畫 21
3.1 試驗材料 21
3.1.1 高爐石粉 21
3.1.2 轉爐石粉 24
3.1.3 卜特蘭水泥 28
3.1.4 細粒料 28
3.1.5 粗粒料 29
3.2 試驗規劃與方法 30
3.2.1 卜作嵐反應之石灰試驗 31
3.2.2 混合水泥符合度試驗 34
3.2.3 混凝土及砂漿抗壓強度試驗 37
3.2.4 快速率離子滲透試驗 37
3.2.5 耐磨耗試驗 39
3.2.6 壓汞試驗 39
3.2.7 透水試驗 40
3.2.8 掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 41
3.2.9 X光繞射分析 (X-ray Diffraction, XRD) 42
3.2.10 生命週期評估方法 43
3.3 配比設計 48
3.3.1 混合水泥配比 48
3.3.2 混合水泥砂漿配比 48
3.3.3 混合水泥混凝土配比 49
第四章 結果與討論 50
4.1 混合水泥符合度試驗結果 50
4.1.1 混合水泥化學性質符合度試驗 50
4.1.2 混合水泥物理性質符合度試驗 52
4.2 混合水泥砂漿試驗結果 53
4.2.1 砂漿抗壓強度試驗 53
4.3 混合水泥混凝土試驗結果 56
4.3.1 混凝土抗壓強度試驗 56
4.3.2 加速氯離子滲透試驗 57
4.3.3 耐磨耗試驗 58
4.3.4 壓汞試驗 59
4.3.5 透水試驗 60
4.3.6 吸水率試驗 60
第五章 綜合討論 62
5.1孔隙結構對抗壓強度的影響 62
5.2 孔隙結構對耐久性的影響 64
5.3混合水泥強度發展機理 68
5.4微結構 71
5.4.1 混合水泥微結構變化與水化機制 71
5.4.2 養護齡期對微結構的影響 78
5.5生命週期評估 81
第六章 結論與建議 87
6.1 結論 87
6.2 建議 88
參考文獻 89
附件 相關標準 95

1. 經濟部能源局, 2010製造業能源查核年報. 經濟部能源局, 2011. http://emis.erl.itri.org.tw/book/ecpaper/list.asp
2. Change, U.N.F.C.o.C., KYOTO PROTOCOL TO THE UNITED NATIONS FRAMEWORK CONVENTION ON CLIMATE CHANGE. UNITED NATIONS, 1998.
3. Huntzinger, D.N. and T.D. Eatmon, A life-cycle assessment of Portland cement manufacturing: comparing the traditional process with alternative technologies. Journal of Cleaner Production, 2009. 17(7): p. 668-675.
4. Wang, Q., P. Yan, and J. Feng, A discussion on improving hydration activity of steel slag by altering its mineral compositions. Journal of Hazardous Materials, 2011. 186(2-3): p. 1070-1075.
5. Iacobescu, R.I., et al., Valorisation of electric arc furnace steel slag as raw material for low energy belite cements. Journal of Hazardous Materials, 2011. 196(0): p. 287-294.
6. Wang, Q., P. Yan, and G. Mi, Effect of blended steel slag–GBFS mineral admixture on hydration and strength of cement. Construction and Building Materials, 2012. 35(0): p. 8-14.
7. World Steel Association.
8. Escalante, J.I., et al., Reactivity of blast-furnace slag in Portland cement blends hydrated under different conditions. Cement and Concrete Research, 2001. 31(10): p. 1403-1409.
9. Mahieux, P.Y., J.E. Aubert, and G. Escadeillas, Utilization of weathered basic oxygen furnace slag in the production of hydraulic road binders. Construction and Building Materials, 2009. 23(2): p. 742-747.
10. Kumar, S., et al., Mechanical activation of granulated blast furnace slag and its effect on the properties and structure of portland slag cement. Cement and Concrete Composites, 2008. 30(8): p. 679-685.
11. Osborne, G.J., Durability of Portland blast-furnace slag cement concrete. Cement and Concrete Composites, 1999. 21(1): p. 11-21.
12. McLellan, B.C., et al., Costs and carbon emissions for geopolymer pastes in comparison to ordinary portland cement. Journal of Cleaner Production. 19(9-10): p. 1080-1090.
13. George, W., Determination of the expansion force of coarse steel slag aggregate. Construction and Building Materials, 2010. 24(10): p. 1961-1966.
14. Zhang, T., et al., Preparation of high performance blended cements and reclamation of iron concentrate from basic oxygen furnace steel slag. Resources, Conservation and Recycling, 2011. 56(1): p. 48-55.
15. Song, S. and H.M. Jennings, Pore solution chemistry of alkali-activated ground granulated blast-furnace slag. Cement and Concrete Research, 1999. 29(2): p. 159-170.
16. Abd El.Aziz, M., et al., Hydration and durability of sulphate-resisting and slag cement blends in Caron's Lake water. Cement and Concrete Research, 2005. 35(8): p. 1592-1600.
17. Adaptation to climate change. The European cement ASSociation, 2014.
18. Pade, C. and M. Guimaraes, The CO2 uptake of concrete in a 100 year perspective. Cement and Concrete Research, 2007. 37(9): p. 1348-1356.
19. Penttala, V., Concrete and Sustainable Developmen. ACI Materials Journal, 1997(94): p. 416-419.
20. A#westeur048#tcin, P.-C., Cements of yesterday and today: Concrete of tomorrow. Cement and Concrete Research, 2000. 30(9): p. 1349-1359.
21. ICF, Climate Wiser – Cement Industry Reporting Plan and Wordbook. CF consulting for U.S. Environmental Protection Agency, 1999. 1.
22. IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories. 2015.
23. 蘇茂豐、陳立, 電弧煉鋼爐碴之資源化現況及未來展望. 工業汙染防治, 2005. 93: p. 27-51.
24. 松田博, 高炉水砕スラグ「土工用材料としての技術資料」. 鐵鋼碴スラグ, 2009.
25. RAKESH KUMAR, S.K., S. BADJENA, and S.P. MEHROTRA, Hydration of mechanically activated granulated blast furnace slag. METALLURGICAL AND MATERIALS TRANSACTIONS B, 2005. 36B: p. 873-883.
26. Tossavainen, M., et al., Characteristics of steel slag under different cooling conditions. Waste Management, 2007. 27(10): p. 1335-1344.
27. Prezzi, I.Z.Y.a.M., Chemical, Mineralogical, and Morphological Properties of Steel Slag. Advances in Civil Engineering, 2011. 2011: p. 13.
28. Roy, D.M., Alkali-activated cements Opportunities and challenges. Cement and Concrete Research, 1999. 29(2): p. 249-254.
29. Palomo, A., M.W. Grutzeck, and M.T. Blanco, Alkali-activated fly ashes: A cement for the future. Cement and Concrete Research, 1999. 29(8): p. 1323-1329.
30. Povindar K. Mehta, P.J.M.M., Concrete: structure, properties, and materials. Prentice-Hall, 1993.
31. Teng, S., T.Y.D. Lim, and B. Sabet Divsholi, Durability and mechanical properties of high strength concrete incorporating ultra fine Ground Granulated Blast-furnace Slag. Construction and Building Materials, 2013. 40(0): p. 875-881.
32. Luo, R., et al., Study of chloride binding and diffusion in GGBS concrete. Cement and Concrete Research, 2003. 33(1): p. 1-7.
33. M.L, B., Properties of sustainable concrete containing fly ash, slag and recycled concrete aggregate. Construction and Building Materials, 2009. 23(7): p. 2606-2613.
34. Siddique, R. and R. Bennacer, Use of iron and steel industry by-product (GGBS) in cement paste and mortar. Resources, Conservation and Recycling, 2012. 69(0): p. 29-34.
35. Shi, C. and R.L. Day, Some factors affecting early hydration of alkali-slag cements. Cement and Concrete Research, 1996. 26(3): p. 439-447.
36. Shi, C., Strength, pore structure and permeability of alkali-activated slag mortars. Cement and Concrete Research, 1996. 26(12): p. 1789-1799.
37. Collins, F. and J.G. Sanjayan, Effect of pore size distribution on drying shrinking of alkali-activated slag concrete. Cement and Concrete Research, 2000. 30(9): p. 1401-1406.
38. Yuan, X.-h., et al., Shrinkage compensation of alkali-activated slag concrete and microstructural analysis. Construction and Building Materials, 2014. 66(0): p. 422-428.
39. sidbey Mindess, J.F.y., David Darwin, Concrete, 2nd Edition. Prentice-Hall, 2003.
40. Kourounis, S., et al., Properties and hydration of blended cements with steelmaking slag. Cement and Concrete Research, 2007. 37(6): p. 815-822.
41. Bonenfant, D., et al., Molecular analysis of carbon dioxide adsorption processes on steel slag oxides. International Journal of Greenhouse Gas Control, 2009. 3(1): p. 20-28.
42. Li, J., et al., Structural characteristics and hydration kinetics of modified steel slag. Cement and Concrete Research, 2011. 41(3): p. 324-329.
43. Wee, T.H., A.K. Suryavanshi, and S.S. Tin, Influence of aggregate fraction in the mix on the reliability of the rapid chloride permeability test. Cement and Concrete Composites, 1999. 21(1): p. 59-72.
44. Muhmood, L., S. Vitta, and D. Venkateswaran, Cementitious and pozzolanic behavior of electric arc furnace steel slags. Cement and Concrete Research, 2009. 39(2): p. 102-109.
45. Monshi, A. and M.K. Asgarani, Producing Portland cement from iron and steel slags and limestone. Cement and Concrete Research, 1999. 29(9): p. 1373-1377.
46. Das, B., et al., An overview of utilization of slag and sludge from steel industries. Resources, Conservation and Recycling, 2007. 50(1): p. 40-57.
47. Juckes, L.M., The volume stability of modern steelmaking slags. Processing and Extractive Metallurgy 2003. 112(3): p. 177-197.
48. H. Y. Poh, Gurmel S. Ghataora, and Nizar Ghazireh, Soil Stabilization using Basic Oxygen Steel Slag Fines. Journal of Materials in Civil Engineering, 2006. 18(2): p. 229-240.
49. Shen, D.-H., C.-M. Wu, and J.-C. Du, Laboratory investigation of basic oxygen furnace slag for substitution of aggregate in porous asphalt mixture. Construction and Building Materials, 2009. 23(1): p. 453-461.
50. Shi, C., Steel Slag—Its Production, Processing, Characteristics, and Cementitious Properties. Journal of Materials in Civil Engineering, 2004. 16(3): p. 230-236.
51. Xuequan, W., et al., Study on steel slag and fly ash composite Portland cement. Cement and Concrete Research, 1999. 29(7): p. 1103-1106.
52. Wang, Q. and P. Yan, Hydration properties of basic oxygen furnace steel slag. Construction and Building Materials, 2010. 24(7): p. 1134-1140.
53. 江玄政, 生命週期評估手冊 (ISO 14000 系列). 財團法人臺灣產業服務基金會/財團法人中技社, 2001.
54. Kofoworola, O. and S. Gheewala, Environmental life cycle assessment of a commercial office building in Thailand. The International Journal of Life Cycle Assessment, 2008. 13(6): p. 498-511.
55. Bastien Girod, P.d.H., Roland W. Scholz, Consumption-as-usual instead of ceteris paribus assumption for demand - Integration of potential rebound effects into LCA. The International Journal of Life Cycle Assessment, 2010. 16(1): p. 3-11.
56. Li, Z., A new life cycle impact assessment approach for buildings. Building and Environment, 2006. 41(10): p. 1414-1422.
57. McNeil, K. and T.K. Kang, Recycled Concrete Aggregates: A Review. International Journal of Concrete Structures and Materials, 2013. 7(1): p. 61-69.
58. Pehnt, M., Dynamic life cycle assessment (LCA) of renewable energy technologies. Renewable Energy, 2006. 31(1): p. 55-71.
59. Jolin, L.-S.B.a.M., Shotcrete Boiled Water Absorption. Shotcrete, 2010: p. 12-17.
60. Quercia , G.S., P.; H#westeur061#sken, G.; Brouwers, H.J.H., Chloride intrusion and freeze-thaw resistance of self- compacting concrete with two different nano-SiO2 Bauhaus-University Weimar, Germany 2012: p. 123-136.
61. Orlova, N.V.W., J C. Rehani, M. Koretsky, M D, The study of chloride ion migration in reinforced concrete under cathodic protection. Oregon Department of Transportation, 1999.
62. Xie, J., et al., Recycling of basic oxygen furnace slag in asphalt mixture: Material characterization &; moisture damage investigation. Construction and Building Materials, 2012. 36(0): p. 467-474.
63. Samet, B. and M. Chaabouni, Characterization of the Tunisian blast-furnace slag and its application in the formulation of a cement. Cement and Concrete Research, 2004. 34(7): p. 1153-1159.
64. Chen, C., et al., LCA allocation procedure used as an incitative method for waste recycling: An application to mineral additions in concrete. Resources, Conservation and Recycling, 2010. 54(12): p. 1231-1240.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top