跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.10) 您好!臺灣時間:2025/10/01 05:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:姚志賢
研究生(外文):Chih-Hsien Yao
論文名稱:以熔燒式、漸變折射率式與點膠式製作光纖透鏡之準直特性之研究
論文名稱(外文):The collimated characteristic improvement of fiber lenses for long-The collimated characteristic improvement of fiber lenses for long-distance application using arcing,gradient index and UV-curable methods
指導教授:高文顯高文顯引用關係
學位類別:碩士
校院名稱:建國科技大學
系所名稱:機電光系統研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:78
中文關鍵詞:準直熔燒式光纖透鏡漸變折射率式光纖透鏡點膠式光纖透鏡
外文關鍵詞:collimated、arcing fiber lens、gradient index fiber lens、UV-curable fiber lens
相關次數:
  • 被引用被引用:0
  • 點閱點閱:312
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文將探討如何分析製作熔燒式光纖透鏡、漸變折射率式光纖透鏡及點膠式光纖透鏡,並探討這三種光纖透鏡之差異及使用上之限制。
在製作熔燒式光纖透鏡會因為電弧放電則透鏡有偏心的情況發生,目前可控制的曲率半徑是經由電流改變來控制,範圍為70 ~ 125 m,誤差約 2 m,漸變折射率式光纖透鏡僅需要做精密的切割即可完成,在切割長度可控制在100 m ~ 10 mm,受限於解析度10μm的限制,所以會有12μm的誤差量,點膠式光纖透鏡透過電漿來處理表面即可控制曲率半徑,目前可控制的曲率半徑為65 ~ 92 m,誤差約 2 m。
透過量測製作出來的熔燒式光纖透鏡偏心所造成光軸傾斜約4.3°,漸變折射率式光纖透鏡光軸傾斜僅約0.5°左右,而點膠式光纖透鏡則偏心都比熔燒式光纖透鏡及漸變折射率式光纖透鏡小的多,而製作出來的光纖透鏡具有一體成形、設計簡單之特性、非常具有產品開發的價值。
In this thesis, the main purpose is how to analyze and make acing,gradient index and UV-curable fiber lens, and elucidates differences and restrictions of usages between these three kinds of fiber lenses.
Lens will discharge due to the tilting arc during to make a arcing fiber lens. So now, this situation can be controlled by having the curvature radius range between 70 ~ 125μm ±2μm. This can be completed by cutting the gradient index fiber lens with precise measurements. The range of cutting length is 100 m ~ 10 mm. As the result of the 10m of distributing points limit, the margin of error will be ±12 m. The surface of UV-curable fiber lens can be handled through O2 plasma. So now, the radius curvature can be controlled within the range of 65 ~ 92μm and margin of error will be ±2μm.
The arcing fiber lens will cause the optic axis to tilt at approximately 4.3 degrees, while the optic axis of the gradient index fiber lens tilt at approximately 0.5 degrees. The tilt of optic axis of the UV-curable fiber lens is much smaller than both the arcing fiber lens and the gradient index fiber lens. Therefore, the UV-curable fiber lens has higher product developing value with whole and simple design.
摘要
Abstract
目錄
圖目錄
表目錄
第一章 緒論
1-1 研究背景及動機
1-2 論文架構
第二章 文獻回顧與理論基礎
2-1 文獻回顧
2-2 元件特性
2-3 理論基礎
2-3.1 全反射
2-3.2 光纖的數值孔徑
2-3.3 高斯光束介紹
2-3.4 光纖透鏡的光學原理
2-3.4.1 熔燒式光纖透鏡與點膠式光纖透鏡
2-3.4.2 漸變折射率式光纖透鏡
第三章 研究方法與步驟
3-1 研究方法
3-1.1 熔燒式光纖透鏡使用之儀器
3-1.2 漸變折射率式光纖透鏡使用之儀器
3-1.3 點膠式光纖透鏡使用之儀器
3-2 參數建立與模擬分析
3-2.1 透鏡相關參數建立
3-2.1.1 熔燒式光纖透鏡
3-2.1.2 漸變折射率式光纖透鏡
3-2.1.3 點膠式光纖透鏡
3-2.2 Lens 模擬分析
3-3 元件製作 42
3-3.1 熔燒式光纖透鏡製作
3-3.2 漸變折射式光纖透鏡製作
3-3.3 點膠式光纖透鏡製作
3-4 元件量測
第四章 結果與討論
4-1 熔燒式光纖透鏡參數建立與模擬分析量測結果
4-1.1 熔燒透鏡特性
4-1.2 切割長度
4-1.3 熔燒式光纖透鏡模擬分析
4-1.4 熔燒式光纖透鏡量測
4-2 漸變折射率式光纖透鏡參數建立與模擬分析量測結果
4-2.1 漸變折射率式光纖透鏡參數建立與光學模擬
4-2.2 漸變折射率式光纖透鏡製量測
4-3 點膠式光纖透鏡參數建立與模擬分析量測結果
4-3.1 點膠式光纖透鏡參數建立與光學模擬
4-3.2 點膠式光纖透鏡量測
4-4 綜合比較
第五章 結論與未來展望
5-1 結論
5-2 未來展望
參考文獻
[1] S. Kwon and L. P. Lee, “ Stacked Two Dimensional Micro-Lens Scanner for Micro Confocal Imaging Array, ” Journal of Microelectromechanical Systems, pp. 483 - 486 (2002).
[2] J. Seo and L. P. Lee, “ Fluorescence Amplification by Self–Aligned Integrated Microfludic Optical Systems, ” IEEE Transducers’03, Boston, MA, pp.1136 -1139 (2003).
[3] J. Hsieh, C. J. Weng, H. H. Lin, H. L. Yin, H. Y. Chou, “ Realization and Characterization of SU-8 Micro Cylindrical Lens for In-plane Micro Optical Systems, ” Journal of Microsystem Technologies, Springer Berlin Heidelberg, VOL. 11, NO. 6 , pp. 429- 437 (2003).
[4] B. Hillerich, “ Influence of Lens Imperfections with LD and LED to Single– Mode Fiber Coupling, ” Journal of Lightwave Technology , VOL. 7 NO. 1 , pp. 77-86 (2003).
[5] Tae-Sun Lim, Chang-Hyeon Ji, Chang-Hoon Oh, Hyouk Kwon, Youngjoo Yee, and Jong Uk Bu, “ Electrostatic MEMS Variable Optical AttenuatorWith Rotating Folded Micromirror, ” IEEE Journal of selected topics in quantum electronics, vol. 10, no. 3, pp.558-562, MAY/JUNE 2004
[6] C. H. Kim, J. Park, N. Park and Y. K. Kim, “ MEMS Fiber-Optic Variable Optical Atteunator using Collimating Lensed Fiber, ” IEEE/LEOS Optical MEMS, pp.145-146 (2003).
[7] K. Shiraishi, “ New Scheme of Coupling from Laser Diode to Single-Mode Fiber: A Beam Expanding Fiber with a Hemispherical End, ” Opt. Lett. 39, pp.3469-3467 (1990).
[8] K. Shiraishi, N. Oyama, K. Matsumura, I. Ohishi, S. Suga, “ A Fiber with a Long Working Distance for Integrated Coupling Between Laser Diode and Single-Mode Fibers, ” J. Lightwave Technol. 13, pp.1736-1744 (1995).
[9] K. Shiraishi, H. Ohnuki, N. Hiraguri, K. Matsumura, I. Ohishi, H. Morichi, H. Kazami, “ A Lensed-Fiber Coupling Scheme Utilizing a Graded-Index Fiber Coreless Fiber Tip, ” J. Lightwave Technol. 15, pp.356-363 (1997).
[10] K. Shiraishi, S. Kuroo, “ A New Lensed-Fiber Configuration Employing Cascade GI-Fiber Chips, ” J. Lightwave Technol. 18, pp.787-794 (2000).
[11] G. Kweon, I Park, J Shim, “ Laser-to-Fiber Optical Coupling Scheme with a Long Working Distance by use of Thermally Overexpanded fiber, ” Appl. Opt. 37, pp.4789-4796 (1998).
[12] W. T. Chen and L. A. Wang, “ Laser-to-Fiber Coupling Scheme by Utilizing a Lensed Fiber Integrated with a Long-Period Fiber Grating, ” IEEE Photon. Technol. Lett. 12, pp.501-503 (2000).
[13] W. B. Joyce and B. C. Deloach, “ Alignment-Tolerant Optical-Fiber Tips for Laser Transmitters, ” J. Lightwave Technol. 3, pp.755-757(1985).
[14] 李宗憲,“ 透鏡光纖的光學模型與耦合效率之研究 ”,國立中
央大學碩士論文, 民國92年.
[15] L. G. Cohen and M. V. Schneider, “ Microlenses for Coupling Junction Laser to Optical Fibers, ” Appl. Opt. 13, pp.89-94 (1974).
[16] H. Kuwahara, M. Sasaki, N. Tokoyo, “ Efficient Coupling From Semiconductor Laser into Single-Mode Fibers with Tapered Hemispherical Ends, ” Appl. Opt. 19, pp.2578-2583 (1980).
[17] V. S. Shah, L. Curtis, R. S. Vodhanel, D. P. Bour, W. C. Young, “ Efficient Power Coupling from a 980nm, Broad-Area Laser to a Single-Mode Fiber Using a Wedge-Shaped Fiber Endface, ” J. Lightwave Technol. 8, pp.1313-1318 (1990).
[18] C. A. Edwards, H. M. Presby, C. Dragone, “ Ideal Microlenses for Laser to Fiber Coupling, ” J. Lightwave Technol. 11, pp.252-257 (1993).
[19] W. Bludau, R. Rossberg, “ Low-Loss Laser-to-Fiber Coupling with Negligible Optical Feedback, ” J. Lightwave Technol. LT-3, pp.294-302 (1985).
[20] M. Thual, P. Chanclou, O. Gautreau, L. Caledec,C. Guignard and P. Besnard, “ Appropriate micro-lens to improve coupling between laser diodes and singlemode fibres, ” ELECTRONICS LETTERS 16th October 2003 Vol. 39 No. 21
[21] Kyung-Rok Kim, Selee Chang, and K. Oh, “ Refractive Microlens on Fiber Using UV-Curable Fluorinated Acrylate Polymer by Surface-Tension, ” IEEE photonics technology letters, VOL. 15, NO. 8, pp. 1100-1102, AUGUST 2003.
[22] 張寶坤 , “ 單模光纖雙光束光鉗之實驗與分析 ”, 國立東華大
學碩士論文, 民國91年.
[23] 吳曜東 , “ 光纖原理與應用 ” , 全華科技圖書股份有限公司 ,
民國86年3月.
[24] 陳瑞鑫、陳鴻仁、林依恩 , “ 光通訊原理與技術 ”, 全華科技圖
書股份有限公司 ,民國93年1月.
[25] G. P. Agrawal , “ Fiber ─ Optic Communication Systems ” ,John
Wiley & Sins, 1993.
[26] 黃偉 , “ 光纖透鏡的光學原理與應用 ”, 北京建築工程學院學
報 ,2005年7月.
[27] http://osdlab.eic.nctu.edu.tw/shieh/Laser.doc
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top