跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/14 05:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王德原
研究生(外文):DER-YUAN WANG
論文名稱:組織工程角膜兔子模式中輪部上皮幹細胞的特徵與鑑別
論文名稱(外文):Characterization and Identification of Limbal Epithelial Stem Cells in a Tissue-Engineered Rabbit Corneal Model
指導教授:陳君侃陳君侃引用關係
指導教授(外文):JAN-KAN CHEN
學位類別:博士
校院名稱:長庚大學
系所名稱:基礎醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:94
中文關鍵詞:角膜功能性輪部幹細胞p63
外文關鍵詞:cornealimbal epithelial stem cellsp63
相關次數:
  • 被引用被引用:0
  • 點閱點閱:653
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
角膜為眼球表面上皮細胞構成之無血管透明組織,角膜上皮細胞則由位於角膜及鞏膜接合處之輪部上皮層(limbal epithelium)內的幹細胞分化而來。因灼傷、感染或其他因素導致角膜輪部組織缺損(total limbal deficiency)的患者,透過於人體羊膜上增殖培養之角膜輪部上皮組織的移植,已可成功重建患者缺損的眼表組織並恢復視力。此種體外增殖的培養模式已建構出組織工程角膜之雛形,而富含幹細胞的輪部上皮組織,更是該組織工程眼角膜成功之關鍵。然而迄今有關角膜輪部上皮幹細胞的特性與鑑別、以及對於羊膜上增殖培養之輪部上皮細胞的屬性與特徵的了解,仍十分有限。本研究以兔子作為角膜幹細胞研究模型,來鑑定兔子輪部上皮組織,與羊膜上增生輪部上皮細胞的細胞生理特徵。在對p63、Ki-67、keratin 3、keratin 14、connexin 43、integrin 6/4與3/1等角膜上皮細胞分化標誌進行免疫染色鑑定後發現,在羊膜上自兔子角膜輪部上皮組織中增殖的底層(basal layer)上皮細胞,仍保有與輪部上皮底層細胞相似的特徵,而生長在羊膜上的上皮細胞具有更高的細胞活性,且該增生細胞組織中亦應富含輪部上皮幹細胞的存在,因此確認羊膜具有保存與增生輪部上皮幹細胞的能力。(相關結果已發表於2003年Invest. Ophthalmol. Visual Sci.期刊第44卷第4698-4704頁)。由即時定量RT-PCR分析不同眼表組織中TAp63與Np63蛋白的表現,以及利用antisense oligonucleotides阻擋活體培養輪部上皮細胞TAp63與Np63的表現,發現在輪部上皮細胞中,TAp63與Np63蛋白可能扮演不同的角色,其中TAp63與維持輪部上皮細胞保有分化潛力但為進入最終分化路徑有關,而Np63則與維持輪部上皮幹細胞的細胞分裂能力,或是促使輪部上皮幹細胞進入最終分化路徑有關(相關結果將發表於2005年Invest. Ophthalmol. Visual Sci.期刊)。比較TAp63與Np63蛋白在兔子角膜的表現與該處上皮組織分化程度,發現兔子角膜在不同輪部區域的上皮組織,呈現出在p63表現量越低的區域其K3的表現量越高的現象,而將不同p63表現量的輪部組織置於羊膜上培養,亦發現與在羊膜上上皮細胞的生長能力亦有密切關連,顯示在活體角膜上皮組織中p63蛋白表現,仍與該處上皮組織進行最終分化與否具有密切關連。因此,p63蛋白即便無法作為角膜輪部上皮幹細胞的專一性細胞標誌,但由其影響上皮細胞分裂與分化之能力,仍可證實其在角膜輪部上皮幹細胞的生長分化,以及維持角膜組織之恆定性方面,扮演重要之角色。
Severe damage to the limbal epithelium due to chemical/thermal burns, virus infection and other pathological events may lead to loss of the limbal epithelial stem cells. Limbal epithelial stem cell deficiency lead to chronic inflammation and vascular invasion of the cornea eventually and cause functional blindness. The autologous and allogenic transplantation of limbal epithelial cells expanded on human amniotic membrane have been introduced to improve the outcome of ocular surface reconstruction in limbal deficient eyes. However, the identification of limbal stem cells and the incorporation of sufficient number of these cells in the bio-engineered corneal tissue remain to be explored. In this study, we employ the cell biological and molecular biological means to identify the characteristics of rabbit limbal epithelial stem cells in normal limbus and in epithelial sheet outgrown from limbal explant cultured on amniotic membrane. The immunofluorescent staining and confocal microscopy were used to examine the expressions of p63, Ki-67, keratins 3 and 14, connexin 43, and integrin 6/4 and  subunits in corneal and limbal tissues, and in limbal explant and its epithelial outgrowth cultured for two weeks on amniotic membrane. Preliminary results showed that the epithelial cell sheet outgrown from limbal explant on amniotic membrane exhibits a phenotype similar to that of the limbus. These results suggested that amniotic membrane is a substrate capable of supporting the propagation and preservation of p63-positive limbal epithelial cells (published in Invest. Ophthalmol. Visual Sci. 2003;44:4698-4704). The real-time Q-RT-PCR was employed to quantify the relative abundance of TAp63 and Np63 transcripts in limbal, peripheral corneal and central corneal epithelia. Antisense oligonucleotides were designed to specifically suppress the expression of TAp63 or Np63 in limbal keratinocytes and their effects on cell proliferation and differentiation were examined. The expressions of TAp63 and Np63 transcripts appeared to be site specific; TAp63 was expressed at the highest level in limbus, decreased in peripheral cornea and was undetectable in the central cornea. Np63 was also expressed at the highest level in limbus, decreased in peripheral cornea and was undetectable in the central cornea. Suppression of TAp63 expression inhibited limbal keratinocyte proliferation but promote differentiation. Suppression of Np63 expression also inhibited cell proliferation but had no obvious effect on cell differentiation. These suggested that TAp63 and Np63 affect the proliferation of limbal keratinocytes by a different mechanism (published in Invest. Ophthalmol. Visual Sci. 2005). We also compared the p63 expression pattern and differentiation levels in different rabbit limbal quadrates. We found that the superior limbal quadrate exhibited the highest level of p63 expression and was characterized by lowest differentiation level. In contrast, the inferior limbal quadrate exhibited very low or undetectable levels of p63 expression and was characterized with terminal differentiation. The ex vivo AM-based epithelial explant culture also showed that the explant from superior limbus has the greatest epithelial outgrowth activity than the cells from other limbal quadrates. Taken together, our results suggested that p63 is not a specific marker of corneal epithelial stem cells. However, different p63 isoforms still play specific roles in maintaining stem cell functions and the entrance to terminal differentiation lineage of corneal epithelial keratinocytes.
中文摘要 ----------------------------------------------------------- 3
ABSTRACT----------------------------------------------------------- 6
INTRODUCTION ----------------------------------------------------- 10
SPECIFIC AIMS ---------------------------------------------------- 18
MATERIALS AND METHODS -------------------------------------------- 19
RESULTS AND DISCUSSION ------------------------------------------- 28
CONCLUSION ------------------------------------------------------- 48
REFERENCES ------------------------------------------------------- 51
FIGURE LEGENDS --------------------------------------------------- 64
FIGURE CONTENTS
Figure 1 --------------------------------------------------------- 74
Figure 2 --------------------------------------------------------- 75
Figure 3 --------------------------------------------------------- 76
Figure 4 --------------------------------------------------------- 77
Figure 5 --------------------------------------------------------- 78
Figure 6 --------------------------------------------------------- 79
Figure 7 --------------------------------------------------------- 80
Figure 8 --------------------------------------------------------- 81
Figure 9 --------------------------------------------------------- 82
Figure 10 -------------------------------------------------------- 83
Figure 11 -------------------------------------------------------- 84
Figure 12 -------------------------------------------------------- 85
Figure 13 -------------------------------------------------------- 86
Figure 14 -------------------------------------------------------- 87
Figure 15 -------------------------------------------------------- 88
Figure 16 -------------------------------------------------------- 89
Figure 17 -------------------------------------------------------- 90
Figure 18 -------------------------------------------------------- 91
Figure 19 -------------------------------------------------------- 92
Figure 20 -------------------------------------------------------- 93
RELATED PUBLICATION ---------------------------------------------- 94
Barbieri CE, Perez CA, Johnson KN, Ely KA, Billheimer D, Pietenpol JA. IGFBP-3 is a direct target of transcriptional regulation by Np63 in squamous epithelium. Cancer Res. 2005;65:2314-2320.
Barnard Z, Apel AJG, Harkin DG. Phenotypic analyses of limbal epithelial cell cultures derived from donor corneoscleral rims. Clin. Experiment. Ophthalmol. 2001;29:138-142.
Belkin AM, Stepp MA. Integrins as receptors for laminins. Microsc. Res. Tech. 2000;51:280-301.
Bell E. Tissue engineering in perspective. Lanza RP, Langer R, Vacanti J. Principle of tissue engineering. 2nd ed. San Diego, CA: Academic Press; 2000: xxxv-xli.
Bello YM, Falabella AF, Eaglstein WH. Tissue-engineered skin. Am. J. Dermatol. 2001;2:305-313.
Bickenbach JR. Identification and behavior of label-retaining cells in oral mucosa and skin. J. Dent. Res. 1981;60:1611-1620.
Blau HM, Brazelton TR, Weimann JM. The evolving concept of a stem cell: entity or function? Cell 2001;105:829-841.
Castro-Munozledo F. Development of a spontaneous permanent cell line of rabbit corneal epithelial cells that undergoes sequential stages of differentiation in cell culture. J. Cell Sci. 1994;107:2343-2351.
Chen JJY. Tseng SCG. Corneal epithelial wound healing in partial limbal deficiency. Invest. Ophthalmol. Vis. Sci. 1990;31:1301-1314.
Chen Z, de Paiva CS, Luo L, Kretzer FL, Pflugfelder SC, Li DQ. Characterization of putative stem cell phenotype in human limbal epithelia. Stem Cells 2004;22:355-366.
Choi HR, Batsakis JG, Zhan F, Sturgis E, Luna MA, EP-Naggar AK. Differential expression of p53 gene family members p63 and p73 in head and neck squamous tumorigenesis. Hum. Pathol. 2002;33:158-164.
Cotsarelis G, Sun TT, Lavker RM. Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell 1990;61:1329-37.
Crook T, Nicholls JM, Brooks L, O’Nions J, Allday MJ. High level expression of N’p63: a mechanism for the inactivation of p53 in undifferentiated nasopharyngeal carcinoma (NPC)? Oncogene 2000;19:3439–3444.
De Laurenzi V, Rossi A, Terrinoni A, Barcaroli D, Levrero M, Costanzo A, Knight RA, Guerrieri P, Melino G. p63 and p73 transactivate differentiation gene promoters in human keratinocytes. Biochem. Biophys. Res. Commun. 2000;273:342–346.
de Paiva CS, Chen Z, Corrales RM, Pflugfelder SC, Li DQ. ABCG2 transporter identifies a population of clonogenic human limbal epithelial cells. Stem Cells 2005;23:63-73.
Di Como C, Marshall JU, Babayan I, Drobnyak M, Hedvat CV, Teruya-Feldstein J, Pohar K, Hoos A, Cordon-Cardo C. p63 expression profiles in human normal and tumor tissues. Clin. Cancer Res. 2002;8:491-501.
Espana EM, Grueterich M, Ti SE, Tseng SCG. Phenotypic study of a case receiving a keratolimbal allograft and amniotic membrane for total limbal stem cell deficiency. Ophthalmology 2003;110:481-486.
Fontes PA, Thomson A. Stem cell technology. BMJ 1999;319:1-3.
Foschini MP, Gaiba A, Cocchi R, Pennesi MG, Gatto MR, Frezza GP, Pession A. Pattern of p63 expression in squamous cell carcinoma of the oral cavity. Virchows. Arch. 2004;444:332-339.
Foschini MP, Gaiba A, Cocchi R, Pennesi MG, Gatto MR, Frezza GP, Pession A. Pattern of p63 expression in squamous cell carcinoma of the oral cavity. Virch. Arch 2004;444:332-339.
Fradette J, Germain L, Seshaiah P, Coulombe PA. The type I keratin 19 possesses distinct context-dependent assembly properties. J. Biol. Chem. 1998;273:35176-35184.
Fuchs E, Green H. Changes inkeratin gene expression during terminal differentiation of the keratinocyte. Cell 1980;19:1033-1042.
Fukuda K, Chikama T, Nakamura M, Nishida T. Differential distribution of subchains of the basement membrane components type IV collagen and laminins among the amniotic membrane, cornea and conjunctiva. Cornea 1999;18:73-79.
Geddert H, Kiel S, Heep HJ, Gabbert HE, Sarbia M. The role of p63 and deltaNp63 (p40) protein expression and gene amplification in esophageal carcinogenesis. Hum. Pathol. 2003;34:850-856.
Gerdes J, Lemke H, Baisch H, Wacker HH, Schwab U, Stein H. Cell cycle analysis of a cell proliferation-associated human nuclear antigen defined by the monoclonal antibody Ki-67. J. Immunol. 1984;133:1710-1715.
Hall PA, Watt FM. Stem cells: the generation and maintenance of cellular diversity. Development 1989;106:619-633.
Hibi K, Trink B, Patturajan M, et al. AIS is an oncogene amplified in squamous cell carcinoma. Proc. Natl. Acad. Sci. USA 2000;97:5462-5467.
Hildesheim J, Belova GI, Tyner SD, Zhou X, Vardanian L, Fornace AJ Jr. Gadd45a regulates matrix metalloproteinases by suppressing DeltaNp63alpha and beta-catenin via p38 MAP kinase and APC complex activation. Oncogene 2004;23:1829-1837.
Holland EJ, Schwartz GS. The evolution of epithelial transplantation for severe ocular surface disease and a proposed classification system. Cornea 1996;15:549-556.
Hsueh YJ, Wang DY, Cheng CC, Chen JK. Age-related expressions of the keratinocyte stem cell markers in rat cornea. J. Biomed. Sci. 2004;11:641-651.
Huelsken J, Voget R, Erdmann B, Cotsarelis G, Birchmeier W. -catenin controls hair follicle morphogenesis and stem cell differentiation in the skin. Cell 2001; 105:533-545.
Hwang WS, Lee BC, Lee CK, Kang SK. Human embryonic stem cells and therapeutic cloning. J. Vet. Sci. 2005;6:87-96.
Hwang WS, Roh SI, Lee BC, Kang SK, Kwon DK, Kim S, Kim SJ, Park SW, Kwon HS, Lee CK, Lee JB, Kim JM, Ahn C, Paek SH, Chang SS, Koo JJ, Yoon HS, Hwang JH, Hwang YY, Park YS, Oh SK, Kim HS, Park JH, Moon SY, Schatten G. Patient-Specific Embryonic Stem Cells Derived from Human SCNT Blastocysts. Science 2005 (in Press).
Ihrie RA, Marques MR, Nguyen BT, Horner JS, Papazoglu C, Bronson RT, Mills AA, Attardi1 LD. Perp is a p63-regulated gene essential for epithelial integrity. Cell 2005;120:843-856.
Jackson KA, et al. Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J. Clin. Invest. 2001;107:1395-1402.
Johnstone B, Yoo JU. Autologous mesenchymal progenitor cells in articular cartilage repair. Clin. Orthop.1999;367 Suppl:S156–S162.
Jones PH, Harper S Watt FM. Stem cell patterning and fate in human epidermis. Cell 1995;80:83-93.
Jones PH, Watt FM. Separation of human epidermal stem cells from transit amplifying cells on the basis of difference in integrin function and expression. Cell 1993;73:713-724.
Jung MS, Yun J, Chae HD, Kim JM, Kim SC, Choi TS, Shin DY. p53 and its homologues, p63 and p73, induce a replicative senescence through inactivation of NF-Y transcription factor. Oncogene 2001;20:5818-5825.
Katoh I, Aisaki KI, Kurata SI, Ikawa S, Ikawa Y. p51A (TAp63gamma), a p53 homolog, accumulates in response to DNA damage for cell regulation. Oncogene 2000;19:3126-3130.
King KE, Ponnamperuma RM, Yamashita T, Tokino T, Lee LA, Young MF, Weinberg WC. Np63 functions as both a positive and a negative transcriptional regulator and blocks in vitro differentiation of murine keratinocytes. Oncogene 2003;22:3635–3644.
Kocher AA, Schuster MD, Szabolcs MJ, Takuma S, Burkhoff D, Wang J, Homma S, Edwards NM, Itescu S. Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nature Med. 2001;7:430-436.
Koizmi N, Inatomi T, Suzuki T, Sotozono C, Kinoshita S. Cultivated corneal epithelial stem cell transplantation in ocular surface disorders. Ophthalmology 2001;108:1569-15745.
Kon E, Muraglia A, Corsi A, Bianco P, Marcacci M, Martin I, Boyde A, Ruspantini I, Chistolini P, Rocca M, Giardino R, Cancedda R, Quarto R. Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critical-size defects of sheep long bones. J. Biomed. Mater. Res. 2000;49:328–337.
Koster MI, Huntzinger KA, Roop DR. Epidermal differentiation: transgenic/knockout mouse models reveal genes involved in stem cell fate decisions and commitment to differentiation. J. Investig. Dermatol. Symp. Proc. 2002;7:41-45.
Koster MI, Kim S, Mills AA, DeMayo FJ, Roop DR. p63 is the molecular switch for initiation of an epithelial stratification program. Genes. Dev. 2004;18:126-131.
Kreidberg JA. Functions of 31 integrin. Curr. Opin. Cell Biol. 2000;12:548-553.
Kumar NM, Gilula NB. The gap junction communication channel. Cell 1996;84:381-388.
Lagasse E, Connors H, Al-Dhalimy M, Reitsma M, Dohse M, Osborne L, Wang X, Finegold M, Weissman IL, Grompe M. Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nature Med. 2000;6:1229–1234.
Langer R Vacanti JP. Tissue engineering: the challenges ahead. Sci. Am. 1999;280:86-89.
Langer, R. and Vacanti, JP. Tissue engineering. Science 1993;260:920-926.
Lauweryns B, van den Oord JJ, Missotten L. Distribution of very late activation integrins in the human cornea. An immunohistochemical study using monoclonal antibodies. Invest. Ophthalmol. Vis. Sci. 1991;32:2079-2085.
Lavker RH, Sun TT. Epidermal stem cells: properties, markers, and location. Proc. Natl. Acad. Sci. 2000;97:13473-13475.
Lavker RM, Sun TT. Heterogeneity in epidermal basal keratinocytes: morphological and functional correlations. Science 1982;215:1239-41.
Lehrer MS, Sun TT, Lavker RM. Strategies of epithelial repair: modulation of stem cell and transit amplifying cell proliferation. J. Cell Sci. 1998;111:2867-2875.
Li A, Simmons PJ, Kaur P, Identification and isolation of candidate human keratinocyte stem cells based on cell surface phenotype. Proc. Natl. Acad. Sci. USA 1998;95:3902-3907.
Li A, Simmons PT, Kaur P. Identification and isolation of candidate human keratinocyte stem cells based on cell surface phenotype. Proc. Natl. Acad. Sci. USA.1998;95:3902-3907.
Liefer KM, Koster MI, Wang XJ, Yang A, McKeon F, Roop DR. Down-regulation of p63 is required for epidermal UV-B-induced apoptosis. Cancer Res. 2000;60:4016-4020.
Liu CY, Zhu G, Converse R, et al. Characterization and chromosomal localization of the corneal-specific murine keratin gene Krt1.12. J. Biol. Chem. 1994;269:24627-24636.
Lu L, Reinach PS, Kao WWY. Corneal epithelial wound healing. Exp. Biol. Med. 2001;226:653-664.
Marshall E. The business of stem cells. Science 2000;287:1419-1421.
Mashima Y, Yamada M, Yamada H, Tsunoda K, Arimoto M. Limbal autograft transplantations for chronic ocular failure. Jpn. J. Clin. Ophthalmol. 1993;47:607-610.
Matic M, Petrov IN, Chen S, Wang C, Dimitrijevich SD, Wolosin JM. Stem cells of the corneal epithelium lack connexins and metabolite transfer capacity. Differentiation 1997;61:251-260.
Meller D, Pires RTF, Tseng SCG. Ex vivo preservation and expansion of human limbal epithelial stem cells on amniotic membrane cultures. Br. J. Ophthalmol. 2002;86:463-471.
Mercurio AM, Rabinovitz I, Shaw LM. The 64 integrin and epithelial cell migration. Curr. Opin. Cell Biol. 2001;13:541-545.
Michel M, Torok N, Godbout MJ, Keratin 19 as a biochemical marker of skin stem cells in vivo and in vitro: keratin 19 expressing cells are differentially localized in function of anatomic sites, and their number varies with donor age and culture stage. J. Cell Sci. 1996;109:1017-1028.
Mills AA, Zheng Bh, Wang XJ, Vogel H, Hoop DR. Bradley A. p63 is a p53 homologue required for limb and epidermal morphogenesis. Nature 1999;398:708-713.
Morrison SJ, Shan NM, Anderson DJ. Regulatory mechanisms in stem cell biology. Cell 1997;31:11-24.
Nelson W, Sun TT. The 50- and 58kdalton keratin classes as molecular markers for stratified squamous epithelia: cell culture studies. J. Cell Biol. 1983;97:244-251.
Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li B, Pickel J, McKay R, Nadal-Ginard B, Bodine DM, Leri A, Anversa P. Bone marrow cells regenerate infarcted myocardium. Nature 2001;410:701–705.
Park BJ, Lee SJ, Kim JL, et al. Frequent alteration of p63 expression in human primary bladder carcinomas. Cancer Res. 2000;60:3370-3374.
Pellegrini G, Dellambra E, Golisano O, et al. p63 identifies keratinocyte stem cells. Proc. Natl. Acad. Sci. USA. 2001;98:3156-3161.
Pellegrini G, Golisano O, Paterna P, Lambiase A, Bonini S, Rama P, De Luca M. Location and clonal analysis of stem cells and their differentiated progeny in the human ocular surface. J. Cell Biol. 1999;145:769-782.
Pellegrini G, Ranno R, Stracuzzi G, Bondanza S, Guerra L, Zambruno G, Micali G, De Luca M. The control of epidermal stem cells (holoclones) in the treatment of massive fullthickness burns with autologous keratinocytes cultured on fibrin. Transplantation 1999;68:868–879.
Pellegrini G, Traverso CE, Franzi AT, Zingirian M, Cancedda R, De Luca M. Long-term restoration of damaged corneal surfaces with autologous cultivated corneal epithelium. Lancet 1997;349:990–993.
Petite H, Viateau V, Bensaid W, Meunier A, de Pollak C, Bourguignon M, Oudina K, Sedel L, Guillemin G. Tissue-engineered bone regeneration. Nature Biotechnol. 2000;18:959–963.
Potten CS, Loeffler M. Stem cells: attributes, cycles, spirals, pitfalls and uncertainties. Development 1990;110:1001-1020.
Ramiya, VK, Maraist M, Arfors KE, Schatz DA, Peck AB, Cornelius JG. Reversal of insulin-dependent diabetes using islets generated in vitro from pancreatic stem cells. Nature Med. 2000;6:278–282.
Ratkay-Traub I, Hopp B, Bor Z, Dux L, Becker DL, Krenacs T. Regeneration of rabbit cornea following excimer laser photorefractive keratectomy: a study on gap junctions, epithelial junctions and epidermal growth factor receptor expression in correlation with cell proliferation. Exp. Eye Res. 2001;73:291-302.
Roop D, Huitfeldt RH, Kilkenny A, Yuspa SH. Regulated expression of differentiation-associated keratins in cultured epidermal cells detected by monoclonal antibodies to unique peptides of mouse epidermal keratins. Differentiation 1987;35:143-150.
Ruszczak Z, Schwartz RA. Modern aspects of wound healing: an update. Dermatol. Surg. 2000;26:219–229.
Schermer A, Galvin S, Sun TT. Differentiation-related expression of a major 64K corneal keratin in vivo and in culture suggests limbal location of corneal epithelial stem cells. J. Cell Biol. 1986;103:49-62.
Solter D. Gearhart J. Putting stem cells to work. Science 1999;283:1468-1470.
Song QH, Singh RP, Trinkaus-Randall V. Injury and EGF mediate the expression of 64 integrin subunits in corneal epithelium. J. Cell. Biochem. 2001;80:397-414.
Taylor G, Lehrer MS, Jensen PJ, Sun TT, Lavker RM. Involvement of follicular stem cells in forming not only the follicle but also the epidermis. Cell 2000; 108:451-61.
Till J. McMulloch E. A direct measurement of the radiation sensitivity of normal bone marrow cells. Rad. Res. 1961;14:1419-1430.
Tsai RJF, Li LM, Chen JK. Reconstruction of damaged corneas by transplantation of autologous limbal epithelial cells. N. Engl. J. Med. 2000;343:86-93.
Tsubota K, Statake Y, Kaido M, et al. Treatment of severe ocular-surface disorders with corneal epithelial stem-cell transplantation. N. Engl. J. Med. 1999;340:1697-1703.
Tsubota K, Toda I, Saito H, Shinozaki N, Shimazaki J. Reconstruction of the corneal epithelium by limbal allograft transplantation for severe ocular surface disorders. Ophthalmology 1995;102:1486-1496.
Wang DY, Cheng CC, Kao MH, Hsueh YJ, Ma DHK, Chen JK. Regulation of Limbal Keratinocyte Proliferation and Differentiation by TAp63 and Np63 Transcription Factors. Invest. Ophthalmol. Vis. Sci. 2005 (In Publishing).
Wang DY, Hsueh YJ, Yang VC, Chen JK. Propagation and phenotypic preservation of rabbit limbal epithelial cells on amniotic membrane. Invest. Ophthalmol. Vis. Sci. 2003;44:4698-4704.
Wang DY, Yang VC, Chen JK. Oxidized LDL inhibits vascular endothelial cell morphogenesis in culture. In Vitro Cell. Dev. Biol. Animal 1998;33:248-255.
Westfall MD, Mays DJ, Sniezek JC, Pietenpol JA. The Np63 phosphoprotein binds the p21 and 14-3-3 promoters in vivo and has transcriptional repressor activity that is reduced by Hay-Wells syndrome-derived mutations. Mol. Cell. Biol. 2003;23:2264-2276.
Wu G, Osada M, Guo Z, Fomenkov A, Begum S, Zhao M, Upadhyay S, Xing M, Wu F, Moon C, Westra WH, Koch WM, Mantovani R, Califano JA, Ratovitski E, Sidransky D, Trink B. Np63 up-regulates the Hsp70 gene in human cancer. Cancer Res. 2005;65:758-766.
Yang A, Kaghad M, Wang Y, Gillett E, Fleming MD, Dotsch V, Andrews NC, Caput D, McKeon F. p63, a p53 homolog at 3q27-29, encodes multiple products with transactivating, death-inducing, and dominant-negative activities. Mol. Cell 1998;2:305-316.
Yang A, McKeon F. P63 and p73: p53 mimics, menaces and more. Nature Rev. Mol. Cell Biol. 2000;1:199-207.
Yang A, Schweitzer R, Sun D. et al. P63 is essential for regenerative proliferation in limb, craniofacial and epithelial development. Nature 1999;398:714-718.
Zhou S, Schuetz JD, Bunting KD, The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotyte. Nat. Med. 2001;7:1028-3464.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文