跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.158) 您好!臺灣時間:2025/12/01 09:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:簡台珍
研究生(外文):Taichen Chien
論文名稱:再生性能源與總體經濟效率之提升
論文名稱(外文):Renewable energy and improvement of macroeconomic efficiency
指導教授:胡均立胡均立引用關係
指導教授(外文):Jin-li Hu
學位類別:博士
校院名稱:國立交通大學
系所名稱:經營管理研究所
學門:商業及管理學門
學類:企業管理學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:71
中文關鍵詞:資料包絡分析技術效率再生性能源
外文關鍵詞:Data Envelopment AnalysisTechnical EfficiencyRenewable Energy
相關次數:
  • 被引用被引用:6
  • 點閱點閱:558
  • 評分評分:
  • 下載下載:116
  • 收藏至我的研究室書目清單書目收藏:1
本論文以資料包絡法分析再生性能源對四十五個經濟體在2001年到2002年技術效率的影響。在我們的DEA模型中,三項投入變數為勞動、資本存量及能源,實值GDP是唯一的產出變數。研究結果顯示,增加再生性能源的使用可以提高一個經濟體的技術效率。另一方面,增加傳統能源的投入卻會降低技術效率。OECD和非OECD經濟體相較,OECD經濟體之技術效率較高。在全體再生性能源之中,OECD經濟體使用之地熱、太陽能、潮汐及風力能源比例較非OECD經濟體高。然而非OECD經濟體所使用之再生性能源在總體能源供給的比例較高。如果固定傳統能源投入總量,我們可以藉著將傳統能源替代為再生性能源以提高技術效率。然而,若要進一步再提高技術效率,我們可以減少傳統能源及再生性能源的投入。文中傳統能源及再生性能源的節能目標係由DEA分析而來,我們計算經過總量調整後的再生性能源佔總能源投入的比率,發現並未比調整前高,由此可見,只要傳統能源及再生性能源的投入都能減少,未來各國並不需要強制設定再生性能源佔總能源的比例。只要兩種能源的投入都能減少,技術效率即能大幅提升。
為了證實增加再生性能源的使用確實能提高GDP,我們必須測試再生性能源的使用是否能提高資本形成及貿易淨出口。我們以路徑分析證實再生性能源的使用確實能提高資本形成。然而,再生性能源的增加和能源的進口卻成正向關係。並且再生性能源對貿易淨出口沒有顯著的影響。這些結果顯示再生性能源並沒有進口替代的效果且無法影響貿易淨出口。總而言之,我們證實再生性能源的使用確實能以提高資本形成的方式增加GDP,但是無法以提高貿易淨出口的方式增加GDP。
This article analyzes the effects of renewable energy on the technical efficiency of forty-five economies during the 2001-2002 period through data envelopment analysis (DEA). In our DEA model, labor, capital stock, and energy consumption are the three inputs and real GDP is the single output. Increasing the use of renewable energy improves an economy’s technical efficiency. Conversely, increasing the input of traditional energy decreases technical efficiency. Compared to non-OECD economies, OECD economies have higher technical efficiency and a higher share of geothermal, solar, tide, and wind fuels in renewable energy. However, non-OECD economies have a higher share of renewable energy in their total energy supply than OECD economies. If the total amount of traditional energy input is fixed, we could increase the technical efficiency of an economy by replacing traditional energy with renewable energy. However, to further increase technical efficiency, both the traditional energy input and renewable energy input should be reduced. The target traditional energy and renewable energy input are estimated by DEA. We calculate the new ratio of renewable energy in total energy after total adjustments and find that the new ratios of renewable energy after total adjustments for each economy are not greater than before adjustments. That means that if we could reduce both traditional energy input and renewable energy input, there is no need to set up national target of renewable energy ratio. The reduction of traditional energy input and renewable energy input could lead to great improvement in technical efficiency.
To sum up, to confirm the relationship between the increase of renewables and the increase of GDP, we need to test whether renewables could increase capital formation or trade balance. We show that capital formation is positively influenced by renewables by path analysis. However, the relationship between renewables and energy imports is significantly positive. Further more, renewables do not have significant impact on trade balance. The results show that renewables do not have import substitution effect and could not influence trade balance. Thus, we confirm the positive relationship between renewable energy and GDP through the path of increasing capital formation but not the path of increasing trade balance.
一、 Introduction 1
1.1 Background of the Research: A Brief Review on Renewable Energy Issues 1
1.2 Data and Descriptive Statistics of Renewable Energy 4
二、 Macroeconomic Technical Efficiency 7
2.1 Measuring Macroeconomic Technical Efficiency by DEA 7
2.2 Second Stage Statistical Analysis 10
三、 ANOVA Analysis 21
3.1 Comparing OECD and non-OECD economies by Profile Analysis 21
四、 Estimating Target Energy Input 27
4.1 Slack and Radial Adjustments of Traditional and Renewable Energy Input 27
4.2 Measuring energy input targets by DEA 31
五、 The Macro-economic theory of the impact of Renewable Energy on GDP 44
六、 The Path Analysis of the impacts of Renewable Energy on GDP 46
七、 Concluding Remarks and Policy Implications 62
Bibliography 68
BIBLIOGRAPHY
Anderson D, Leach M (2004). Harvesting and redistributing renewable energy: on the role of gas and electricity grids to overcome intermittency through the generation and storage of hydrogen. Energy Policy 32, 1603-1614
Banker RD, Charnes A, Cooper WW (1984). Some models for estimating technical and scale inefficiencies in data envelopment analysis. Management Science 30, 1078-1092
Babiker M, Reilly J, Laurent V (2004) Is international emissions trading always beneficial? Energy Journal 25(2): 33-56
Bhattacharya SC, Abdul Salam P, Pham HL, Ravindranath NH (2003). Sustainable biomass production for energy in selected Asian counties. Biomass and Bioenergy 25, 471-482
Boyd GA, Pang JX (2000). Estimating the linkage between energy efficiency and productivity. Energy Policy 28, 289-296
Caputo AC, Palumbo M, Pelagagge PM, Scocchia F (2005). Economics of biomass energy utilization in combustion and gasification plants: effects of logistic variables. Biomass and Bioenergy 28, 35-51
Chang J, Leung DYC, Wu CZ, Yuan ZH (2003). A review on the energy production, consumption, and prospect of renewable energy in China. Renewable and Sustainable Energy Reviews 7, 453-468
Charnes A, Cooper WW, Rhodes E (1978). Measuring the efficiency of decision making units. European Journal of Operation Research 2, 429-444
Charnes A, Cooper WW, Rhodes E (1981). Evaluating program and managerial efficiency: An application of data envelopment analysis to program follow through. Management Science 27, 668-697
Coelli TJ (1996). A Guide to Deap Version 2.1: A Data Envelopment Analysis (Computer) Program. Department of Econometrics, University of New England, Amidale, Australia
Coelli TJ, Rao DSP, Battese GE (1998). An Introduction to Efficiency and Productivity Analysis. Kluwer Academic Publishers, Boston, MA
Domac J, Richards K, Risovic S (2005). Socio-economic drivers in implementing bioenergy projects. Biomass and Bioenergy 28, 97-106
Dowaki K, Mori S (2005). Biomass energy used in a sawmill. Applied Energy 80, 327-339
EU (2001). Directive 2001/77/EC on the promotion of electricity produced from renewable energy sources in the international electricity market
Ford A, Vogstad K, Flynn H (2007). Simulating price patterns for tradable green certificates to promote electricity generation from wind. Energy Policy 35, 91-111
Green C, Baksi S, Dilmaghani M (2007). Challenges to a climate stabilizing energy future. Energy Policy 35, 616-626
Hatcher L (1994). A Step-by-step Approach to Using SAS for Factor Analysis and Structural Equation Modeling. SAS Inc., Cary, NC
Hu JL, Kao CH (2007). Efficient energy-saving targets for OECD economies. Energy Policy 35, 373-382
Hu JL, Wang SC (2006). Total-factor energy efficiency of regions in China. Energy Policy 34, 3206-3217
International Energy Agency (IEA) (2003, 2004). Renewables Information 2003 edition and 2004 edition, OECD/IEA, Paris
International Monetary Fund (2005). World Economic Outlook Database, September 2005. Accessible at http://www.imf.org
Iyer KG, Rambladi AN, Tang KK (2004). Measuring spillovers from alternative forms of foreign investment. Working paper series from Centre for Efficiency and Productivity Analysis, University of Queensland
Katinas V, Markevicius A (2006). Promotional policy and perspectives of usage renewable energy in Lithuania. Energy Policy 34, 771-780
Lin G, Eskeland GS, Kolshus HH (2007). Green electricity market development: lessons from Europe and the US. Energy Policy 35, 144-155
Lund PD (2007). Effectiveness of policy measures in transforming the energy system. Energy Policy 35, 627-639
Lund PD (2007). Upfront resource requirements for large-scale exploitation schemes of new renewable technologies. Renewable Energy 32, 442-458
Owen (2004). Environmental externalities, market distortions and the economics of renewable energy technologies. Energy Journal 25, 127-156
Penn World Table 5.6 (1998). Accessible at http://datacentre.chass.utoronto.ca/pwt56/
Pitman RM (2006). Wood ash use in forestry – a review of the environmental impacts. Forestry 79, 563-588
Rathmann M (2007). Do support systems for RES-E reduce EU-ETS-driven electricity prices? Energy Policy 35, 342-349
Reijnders L (2006). Conditions for the sustainability of biomass based fuel use. Energy Policy 34, 863-876
Schneider UA, McCarl BA 2003. Economic potential of biomass based fuels for greenhouse gas emission mitigation. Environmental and Resource Economics 24, 291-312
Soderholm P, Ek K, Pettersson M (2007). Wind power development in Sweden: global policies and local obstacles. Renewable and Sustainable Energy Review 11, 365-400
Wamukonya N (2007). Solar home system electrification as a viable technology option for Africa’s development. Energy Policy 35, 6-14
World Bank (2005). World Development Indicators. Accessible at http://www.worldbank.org
Yue CD, Wang SS (2006). GIS-based evaluation of multifarious local renewable energy sources: a case study of the Chigu area of southwestern Taiwan. Energy Policy 34, 730-742
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top