跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/07 14:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊康
研究生(外文):Kang Yang
論文名稱:PHEV節能控制策略研究與HIL模擬驗證
論文名稱(外文):Development and Validation of Powertrain Hardware-in-the-Loop Simulation for Energy-Efficient Control Strategy of Plug-in Hybrid Electric Vehicle
指導教授:鄭榮和
口試日期:2017-07-21
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:117
中文關鍵詞:複合動力車節能控制策略複合動力控制單元模型迴路模擬硬體迴路測試
外文關鍵詞:plug-in hybrid electric vehicleenergy-efficient control strategyhybrid control unitmodel-in-the-loophardware-in-the-loop
相關次數:
  • 被引用被引用:2
  • 點閱點閱:188
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究將針對插電式複合動力車輛系統,發展一套節能控制策略,在不同車輛狀態及需求下,有效率地操縱動力單元驅動車輛,以達到最佳的性能表現及更低的污染排放。同時,為能有效預防失效及危害的發生,減少系統除錯所帶來的時間成本。將在離線環境下,利用模型迴路模擬,測試上述控制策略,並將策略燒錄在複合動力控制單元。利用AVL動力系統測試平台,以真實硬體取代部份虛擬車輛模型,進行全尺寸複合動力車輛系統硬體迴路測試。模擬車輛在各種路面運行工況,分析動力系統的真實回饋並驗證控制策略有效性。如此,在原型車試裝之前,就得以除去大部分的系統失效與安全危害,確保所發展控制策略之穩健度及完備性,及最終產出實車達到車型目標規格。
This study focus on developing a stable, complete, and energy-efficient control strategy for specific PHEVs. Under different driving conditions and requests, the power units can drive the mobile efficiently, accomplish best performance and reduce the exhaust emissions. The control strategy would be very complicated to realize the functional requirements. There are increasing risks from systematic failures caused by logic defects and random hardware failures. To prevent failures and avoid hazards effectively before the mule car is assembled, and reduce the time spent on system debugging. This study also proposes a validation process for the control strategy embedded in PHEVs. The strategy can be continuously verified if it fulfills the system requirements during the early phase of automotive development. At first, implement model-in-the-loop simulation with ASM vehicle dynamics model on offline PC. To certify whether the strategy meet the functional requirements, and burn it to hybrid control unit (HCU). At last, set up the full-scale powertrain testbed, build the virtual vehicle model in AVL Inmotion, and communicate HCU with AVL PUMA system. Using hardware-in-the-loop simulation, to imitate real-life driving situations, analysis the actual feedback of the powertrain system, and validate effectiveness of the control strategy. In this way, most of the failures and hazards can be eliminated before the mule car is assembled. In order to confirm the completeness of the developed control strategy.
摘要 I
Abstract II
目錄 III
圖目錄 VII
表目錄 XI
縮寫表 XII
1.第一章 緒論 1
1.1研究背景 1
1.2研究動機與目的 5
1.3研究流程與方法 7
1.4本文架構 11
2.第二章 文獻回顧 13
2.1節能控制策略 13
2.1.1規則策略 15
1.明確規則策略 15
2.模糊控制策略 16
2.1.2最佳化策略 18
1.全域最佳化控制 18
2.即時最佳化策略 19
2.2車輛HIL驗證 22
2.3文獻回顧總結 24
3.第三章 節能控制策略 25
3.1節能控制策略發展與驗證之方法與流程 26
3.2整車動力系統架構規格展開 28
3.3整車控制功能需求 30
3.3.1上下電管理 30
3.3.2離合器控制 31
3.3.3動力輸出控制 31
3.3.4增程發電控制 32
3.3.5引擎噴油與斷油控制 32
3.3.6十二伏電池充電管理 32
3.3.7引擎與高壓元件熱管理 32
3.4節能控制策略架構與功能模組分化 33
3.5節能控制策略功能模組設計與建立 39
3.5.1上下電模式管理 39
3.5.2動力元件性能計算 41
3.5.3駕駛者扭力需求判斷 42
3.5.4動力模式切換 45
3.5.5傳動系統運作狀態 49
3.5.6扭力分配 50
3.5.7扭力裁決 59
3.5.8增程發電控制 60
3.6節能控制策略功能模組整合 61
3.7小結 61
4.第四章 模擬結果分析與探討 62
4.1 MIL模擬架構與方法 62
4.2能耗測試模擬 63
4.2.1 等效油耗計算方式 63
4.2.2研究車型與比較車型規格展開 65
4.2.3能耗模擬結果 66
4.3 SIL模擬結果 75
4.4小結 77
5.第五章 HIL測試規劃 78
5.1複合動力車輛系統HIL平台架構 78
5.2 HIL平台測試設備規格 80
5.2.1 PUMA動力計 80
5.2.2 BME動力計 81
5.2.3 AVL EMCOM 81
5.2.4 e-Storage Emulator(電池模擬器) 82
5.2.5 AVL InMotion車輛模擬器 83
5.3 HIL平台測試規劃 84
5.3.1動力系統安裝 84
5.3.2節能控制策略燒錄 87
5.3.3動力系統單件與集成測試 89
5.3.4車輛模型轉移 91
5.3.5測試案例建立與HIL測試 92
5.4 HIL模擬結果 93
5.5小結 94
6.第六章 結論與未來方向 95
6.1研究結論 95
6.2未來方向 96
參考文獻 97
7.附錄 100
A.車輛HIL測試平台動力計類型 100
A.1動力單元動力計 100
A.2四輪動力計 101
A.3底盤動力計 102
B.車輛模型功能驗證 103
B.1複合動力車輛模型驗證與修改流程 103
B.2引擎模型驗證 105
B.3馬達模型驗證 109
B.4電池模型驗證 115
[1]https://en.wikipedia.org/wiki/Toyota_Prius
[2]M. Ehsani, Y. Gao, S. E. Gay, A. Emadi, "Modern Electric, Hybrid Electric, and Fuel Cell Vehicles," CRC Press 2 edition, pp. 117, 2009
[3]林政勳, "應用模糊控制於插電式雙軸並聯式油電混合車能量管理策略研究, "碩士,台灣大學機械工程學研究所學位論文,台灣大學, 2014
[4]http://blogs.dnvgl.com/energy/us-clean-power-plan-and-global-emissions-what-difference-does-the-ccp-make-2
[5]Global Comparison of Passenger Car and Light-commercial Vehicle Fuel Economy/GHG Emissions Standards, The International Council on Clean Transportation, 2014
[6]F. R. Salmasi, "Control Strategies for Hybrid Electric Vehicles: Evolution, Classification, Comparison, and Future Trends," IEEE Transactions on Vehicular Technology, vol. 56, no. 5, pp. 2393, 2404, 2007
[7]曾全佑,余致賢,林宛婷, "複合動力車輛能量管理系統參數最佳化之研究,"Journal of Technology, Vol. 30, No. 4, pp. 289-301, 2015
[8]S. Overington, S. Rajakaruna, "Review of PHEV and HEV operation and control research for future direction," 2012 3rd IEEE International Symposium on Power Electronics for Distributed Generation Systems (PEDG), pp. 385, 392, 2012
[9]A. M. Phillips, M. Jankovic, K.E. Bailey, "Vehicle system controller design for a hybrid electric vehicle," IEEE International Conference on Control Applications, pp. 297, 302, 2000
[10]S. Jeon, Y. Park, J. Lee, and S. Jo, "Multi-Mode Driving Control of a Parallel Hybrid Electric Vehicle Using Driving Pattern Recognition," 2002
[11]J. Kim, T. Kim, B. Min, S. Hwang, H. Kim, "Mode Control Strategy for a Two-Mode Hybrid Electric Vehicle Using Electrically Variable Transmission (EVT) and Fixed-Gear Mode," IEEE Transactions on Vehicular Technology, vol. 60, no. 3, pp. 793, 803, 2011
[12]F. Khoucha, M. E. H. Benbouzid, A. Kheloui, "An optimal fuzzy logic power sharing strategy for Parallel Hybrid Electric Vehicles," IEEE Transactions on Vehicle Power and Propulsion Conference, 2010
[13]N. J. Schouten, M. A. Salman, N. A. Kheir, "Fuzzy logic control for parallel hybrid vehicles," IEEE Transactions on Control Systems Technology, vol. 10, no. 3, pp. 460, 468, 2002
[14]T. Yi, Z. Xin, Z. Liang, Z. Xinn, "Intelligent Energy Management Based on Driving Cycle Identification Using Fuzzy Neural Network," ISCID Second International Symposium on Computational Intelligence and Design, vol. 2, pp. 501, 504, 2009
[15]C. C. Lin, H. Peng, J. W. Grizzle, J. M. Kang, "Power management strategy for a parallel hybrid electric truck," IEEE Transactions on Control Systems Technology, vol. 11, no. 6, pp. 839, 849, 2003
[16]L. L. Guo, L. N. Ren, Y. Xiang, B. Z. Gao, H. Chen, "Performance analysis of a PHEV under optimal control strategy," IEEE Vehicle Power and Propulsion Conference, Beijing, 2013
[17]Y. G. Luo, T. Chen, S. W. Zhang, K. Q. Li, "Intelligent hybrid electric vehicle ACC with coordinated control of tracking ability, fuel economy, and ride comfort," IEEE Transactions on Intelligent Transportation Systems, 2015
[18]N. Kim, S. Cha, H. Peng, "Optimal control of hybrid electric vehicles based on Pontryagin 0 s minimum principle," IEEE Transactions on Control Systems Technology, 2011
[19]Z. Yuan, L. Teng, F. C. Sun, H. Peng, "Comparative study of dynamic programming and Pontryagin 0 s minimum principle on energy management for a parallel hybrid electric vehicles," Energies, 2013
[20]Y. Zhang, H. P. Liu, Q. Guo "Varying-domain optimal management strategy for parallel hybrid electric vehicles," IEEE Transactions on Vehicular Technology, 2014
[21]G. Paganelli, S. Delprat, T. M. Guerra, J. Rimaux, J. J. Santin, "Equivalent consumption minimization strategy for parallel hybrid powertrains," IEEE Vehicular Technology Conference, vol. 4, pp. 2076, 2081, 2002
[22]C. Musardo, G. Rizzoni, B. Staccia, "A-ECMS: An Adaptive Algorithm for Hybrid Electric Vehicle Energy Management," IEEE Conference on Decision and Control, pp. 1816, 1823, 2005
[23]F. J. Yan, J. M. Wang, K. S. Huang, "Hybrid electric vehicle model predictive control torque-split strategy incorporating engine transient characteristics," IEEE Transactions on Vehicular Technology, 2012
[24]H. A. Borhan, A. Vahidi, A. M. Phillips, M. L. Kuang, I. V. Kolmanovsky, "Predictive energy management of a power-split hybrid electric vehicle," American Control Conference, pp. 3970, 3976, 2009
[25]A. Joshi, “Real-Time Implementation and Validation for Automated Path Following Lateral Control Using Hardware-in-the-Loop (HIL) Simulation," SAE Technical Paper 2017-01-1683, 2017
[26]S. Klein, R. Savelsberg, F. Xia, D. Guse, J. Andert, T. Blochwitz, C. Bellanger S. Walter, S. Beringer, J. Jocheim, and N. Amringer “Engine in the Loop: Closed Loop Test Bench Control with Real-Time Simulation," SAE Int. J. Commer. Veh., vol. 10, 2017
[27]D. Lu, S. Hong, J. Sullivan, G. Hu, E. Dai, D. Reed, and R. Baker, “Predictive Transmission Shift Schedule for Improving Fuel Economy and Drivability Using Electronic Horizon," SAE Int. J. Engines, vol. 10, pp. 680-688, 2017
[28]B. Krishnamoorthy, J. Eapen, S. Kshirsagar, G. Nammalwar, T. Wulf, and M. Mancilla, “Blending Hardware-in-the-Loop System with Automation," SAE Technical Paper 2017-01-1677, 2017
[29]J. Andert, S. Klein, R. Savelsberg, S. Pischinger, and K. Hameyer, “Virtual shaft: Synchronized motion control for real time testing of automotive powertrains," Control Engineering Practice, pp. 101-110, 2016
[30]P. Chambon, D. Deter, and D. Smith, "Electric Drive Transient Behavior Modeling: Comparison of Steady State Map Based Offline Simulation and Hardware-in-the-Loop Testing," SAE Int. J. Passeng. Cars – Electron. Electr. Syst., vol. 10, pp. 186-193, 2017
[31]https://www.epa.gov/fueleconomy/electric-vehicles-learn-more-about-new-label
[32]https://www.avl.com/
[33]http://www.stahle.com/index.php
[34]孫允中, "多動力元件組合之插電式串並聯式複合動力電動車能量管理策略研究, "碩士,台灣大學機械工程學研究所學位論文,台灣大學, 2016
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top