跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/07 21:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林彥志
研究生(外文):Yen-chih Lin
論文名稱:不同接觸曝氣濾材處理養豬廢水之同槽硝化脫硝效率
論文名稱(外文):Simultaneous Nitrification-Denitrification in a Contact Aeration System Using Different Media for the Treatment of Swine Wastewater
指導教授:黃家勤黃家勤引用關係
學位類別:碩士
校院名稱:國立臺南大學
系所名稱:環境生態研究所碩士班
學門:環境保護學門
學類:環境資源學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:87
中文關鍵詞:生物介質接觸曝氣同槽硝化脫硝蚵殼
外文關鍵詞:contact aerationsimultaneous nitrification denitrificationoyster shell
相關次數:
  • 被引用被引用:3
  • 點閱點閱:1101
  • 評分評分:
  • 下載下載:92
  • 收藏至我的研究室書目清單書目收藏:2
同槽硝化脫硝之廢水生物脫氮程序可簡化操作設備與操作程序,近年來逐漸受到國內外學者的重視。本研究以養豬廢水為水源,並以蚵殼、礫石、石英陶瓷環為生物介質,探討接觸曝氣系統之同槽硝化脫硝效率,以及最佳操作條件。
研究結果顯示,系統的合理水力停留時間為16 小時。受到碳源不足的限制,延長水力停留時間,系統的效率提升有限。蚵殼介質系統與礫石介質系統同槽硝化脫硝之最佳溶氧為4.0 mg/L,石英陶瓷環介質系統則為3.5 mg/L。三種實驗濾材的脫氮效率以蚵殼最佳,在水力停留時間為16 小時的情況下,總氮去除率為42.4%,礫石與陶瓷環介質系統則分別為38.7%與30.8 %。預期透過外加有機碳源以及採用廢水回流設計可以進一步提高系統脫氮效率。實際觀察結果認為,蚵殼濾材表面粗糙,微生物絮體不易脫落,系統生物密度高於另兩種濾材。此外,蚵殼介質大小與形狀不均,所構成之濾材其內部孔隙尺度各不相同,允許好氧與厭氧環境並存,為蚵殼介質系統同槽硝化脫硝效率高於其他兩種試驗介質之主要原因。
Biological nitrogen removal using simultaneous nitrification-denitrification (SND) process can greatly minimize system requirements and the complexity of system operation. It has gained much attention in recent years. In this study, the SND efficiency of a contact aeration system in the treatment of swine wastewater has been investigated using oyster shells, gravels and quartz ceramics as biofilters. Results show that reasonable hydraulic retention time for the system was 16 hours. Further improvement on nitrogen removal was limited by the lack of organic carbon source for denitrification. Optimal dissolved oxygen concentrations was 4.0 mg/L for both the oyster and the gravel systems, and 3.5 mg/L for the quartz ceramics system. Results also show that oyster shell is the most efficient medium among the three bio-filters tested. Under a hydraulic retention time of 16 hours, total nitrogen removal efficiencies were 42.4%, 38.7% and 30.8% respectively for the oyster shell, gravel and ceramic ring media systems. It was observed that the rough surface of oyster shells provide ideal media for microbial growth. High microbial density contributed to higher efficiency of the oyster shell system. The uneven sizes and
shapes of oyster shells could also have created pore space of different sizes in the medium which promote the coexistence of aerobic and anaerobic microenvironments
for nitrification and subsequent denitrification.
摘要 ........................................................................................................................... I
ABSTRACT ............................................................................................................. II
誌謝 ........................................................................................................................ III
目錄 ........................................................................................................................ IV
表目錄 .................................................................................................................... VI
圖目錄 ................................................................................................................... VII
第一章 前言............................................................................................................. 1
1.1 研究緣起 ....................................................................................................... 1
1.2 研究內容與目的............................................................................................ 4
第二章 文獻回顧 ..................................................................................................... 6
2.1 養豬廢水之水質特性及處理方法 ................................................................. 6
2.1.1 養豬廢水之組成與水質特性 ................................................................. 6
2.1.2 養豬廢水之處理方法 ............................................................................. 7
2.2 生物脫氮基本原理 ...................................................................................... 10
2.1.1 硝化作用 ............................................................................................... 11
2.1.2 脫硝作用 .............................................................................................. 14
2.2 高濃度廢水之各種硝化脫硝方法 ............................................................... 16
2.2.1 厭氧氨氧化程序 .................................................................................. 16
2.2.2 氧限制自營硝化脫硝程序 ................................................................... 18
2.2.3 短程硝化脫硝程序............................................................................... 19
2.3 同時硝化脫硝程序 ...................................................................................... 20
2.3.1 同時硝化脫硝原理............................................................................... 21
2.3.2 介質之使用 .......................................................................................... 23
2.3.2.1 生物膜法與活性污泥法 ............................................................... 23
2.3.3 操作條件 .............................................................................................. 25
2.3.3.1 碳源 .............................................................................................. 25
2.3.3.2 DO ................................................................................................ 26
2.3.3.3 pH 值 ............................................................................................ 27
2.3.3.4 溫度 .............................................................................................. 28
2.3.3.5 水力停留時間 ............................................................................... 29
第三章、實驗材料和方法 ..................................................................................... 30
V
3.1 系統配置 ..................................................................................................... 30
3.1.1 調節槽 .................................................................................................. 31
3.1.2 接觸曝氣槽 .......................................................................................... 31
3.1.3 接觸濾材 .............................................................................................. 31
3.2 實驗流程 ..................................................................................................... 32
3.3 操作條件 ..................................................................................................... 34
3.4 採樣與檢測分析方法 .................................................................................. 35
3.4.1 採樣與水樣保存 .................................................................................. 35
3.4.2 檢測與分析方法 .................................................................................. 35
第四章 結果與討論 ............................................................................................... 37
4.1 水質監測結果 ............................................................................................. 37
4.2 系統整體效率 ............................................................................................. 38
4.3 操作條件之影響.......................................................................................... 55
4.3.1 溶氧對同時硝化脫硝的影響 ............................................................... 55
4.3.2 HRT 對同時硝化脫硝的影響 .............................................................. 58
4.4 不同介質之效率.......................................................................................... 62
4.4.1 各介質脫氮效率之比較 ......................................................................... 62
4.4.2 各介質氨氮去除效率之比較 ................................................................. 64
4.5 硝化效率之探討.......................................................................................... 65
4.5.1 有機碳源之影響 .................................................................................... 65
4.6 脫氮效率之探討.......................................................................................... 67
4.6.1 碳氮比之影響 ........................................................................................ 67
第五章、結論與建議 ............................................................................................. 70
5.1 結論 ............................................................................................................. 70
5.2 建議 ............................................................................................................. 70
參考文獻 ................................................................................................................ 71
附錄一:水質分析數據 ............................................................................................ 82
附錄二:現場檢測數據 ............................................................................................ 85
Altas, R. M. (1988). Microbiology-Fundamentals and Applications , 2nd, Macmillan.

Baek, S. H. & Pagilla, K. R. (2008). Simultaneous nitrification and denitrification of municipal wastewater in aerobic membrane bioreactors. Water Environment Research, 80(2), 109-117.

Bazylinski, D. A. & Blakemore, R. P. (1983). Denitrification and assimilatory nitrate reduction in Aquaspirillum magnetotacticum. Applied and Envitonmental Microbiology, 46(5), 1118-1124.

Beer, W. J. & Gibbs, D. F. (1975). Chemical flocculation as a tertiary treatment for pig effluent. Water Research, 9, 1047-1050.

Bergey, D. H. (1934). Bergey''s Manual of Determinative Bacteriology. Medical Sciences, 188(2), 282.

Bernet, N., Delgenes, N., Akunna, J. C., Delgenes, J. P. & Moletta, R. (2000). Combined anaerobic-aerobic SBR for the treatment of piggery wastewater. Water Research, 34(2), 611-619.

Bernet, N., Peng, D. C., Delgenes, J. P. & Moletta, R. (2001). Nitrification at low oxygen concentration in biofilm reactor. Environment Engineering Journal, 127(3), 266-271.

Bertanza, G. (1997). Simultaneous nitrification-denitrification process in extended aeration plants: Pilot and real scale experiences. Water Science and Technology, 35(6), 53-61.

Breitenbucher, K., Siegl, M., Knupfer, A. & Radke, M. (1990). Open-pore in sintered glass as a high-efficiency support medium in bioreactors: new results and long-term experiences achieved in high-rate anaerobic digestion. Water Science and Technology, 22(1-2), 25-32.

Broda, E. (1977). Two Kinds of lithotrophs missing in nature. Microbiol, 17, 491-493.

Carrera, J., Vicent, T. & Lafuente, J. (2004). Effect of influent COD/N ratio on biological nitrogen removal(BNR) from high-strength ammonium industrial wastewater. Process Biochemistry Journal, 3(9), 2035-2041.

Cervantes, F., Monroy, O. & Gomez, J. (1999). Influence of ammonium on the performance of a denitrifying cuhure under heterotrophic conditions. Appl Biochem Biotechnol, 81, 13-21.

Chang, Y. J. & Tseng, S. K. (1999). A novel double-membrane system for simultaneous nitrification and denitrification in a single tank. Appl Microbiol, 28 (6), 453-456.

Chen, Z. B., Hu, D. X., Ren, N. Q. & Zhang, Z. P. (2008). Simultaneous removal of organic substances and nitrogen in pilot-scale submerged membrane bioreactors treating digested traditional Chinese medicine wastewater. International Biodeterioration and Biodegradation, 62(3), 250-256.

Chiemchaisri, C. (1992). Organic tabilization and nitrogen removal in membrane separation bioreactor for domestic wastewater treatment. Water Science and Technology, 25(10), 231-240。

Chiu, Y. C., Lee, L. L., Chang, C. N. & Chao, A. C. (2007). Control of carbon and ammonium ratio for simultaneous nitrification and denitrification in a sequencing batch bioreactor. International Biodeterioration & Biodegradation, 59, 1-7.

Chung, M. L. & Takaaki, M. (1994). Nitrification/denitrification in an intermittent aeration process for swine wastewater. Environmental Science and Health, 29(5), 1053-1078.

Coble, R. L. (1961). Sintering crystalline solids II. Experimental test of a diffusion models in powder compacts. J. Appl Phys, 32, 793.

Collivignarelli, C. & Bertanza, G. (1999). Simultaneous nitrification denitrification processes in activated sludge plants: performance and applicability. Water Science and Technology, 40 (4-5), 187-194.

Dirasian, H. A., Molof, A. H. & Borchardt, J. A. (1963).Electrode potential in digestion. J. Water Pollut. Control Fed, 35, 427-437.

Focht, D. D. & Verstraete , W. (1997). Biochemical ecology of nitrification and denitrification. Adv. Microb. Ecol, 1, 135-214.

Fu, Z., Yang, F., Zhou, F. & Xue, Y. (2009). Control of COD/N ratio for nutrient removal in a modified membrane bioreactor (MBR) treating high strength wastewater. Bioresource Technology, 100, 136-141.

Furumai, H. & Rittmann, B. E. (1992). Advanced Modeling of Mixed Populations of Heterotrophs and Nitrifiers Considering the Formation and Exchange of Soluble Microbial Products. Water Science and Technology, 26(3-4), 493-502.

Garrido, J. M., Van Benthum, W. A. J., VanLoosdrecht, M. C. M. & Heijnen, J. J. (1997). Influence of dissolved oxygen concentration on nitrite accumulation in a biofilm airlift suspension reactor. Biotechnology and bioengineering, 53(2), 168-178.

Guerdat, T. C., Losordo, T. M., Classen, J. J., Osborne, J. A., DeLong, D. (2011). Evaluating the effects of organic carbon on biological filtration performance in a large scale recirculating aquaculture system. Aquacultural Engineering, 44, 10-18.

Guo, H. Y., Zhou, J. T., Su, J. & Zhang, Z. Y. (2005). Integration of nitrification and denitrification in airlift bioreactor. Biochemical Engineering, 23(1), 57-62.

Guo, J., Peng, Y. Z., Wang, S.Y., Zheng, Y. A., Huang, H. J. & Wang, Z. W. (2009). Long-term effect of dissolved oxygen on partial nitrification performance and microbial community structure. Bioresource Technology,100(11), 2796-2802.

Helmer, C. & Kunst, S. (1998). Simultaneous nitrification/denitrification in an aerobic biofilm system. Water Science and Technology, 37 (4-5), 183-187.

Holman, J. B. & Wareham, D. G. (2005). COD, ammonia and dissolved oxygen time profiles in the simultaneous nitrification/denitrification process. Biochemical Engineering, 22(2), 125-133.

Holmes, B., Popoff, M., Kiredjian, M. & Kersters, K. (1988). Ochrobactrum anthropi gen-nov sp-nov. from human clinical specimens and previously known as group Vd . International Joirnal of Systematic Bacteriology, 38(4), 406-416.

Ivan, M., Alenka, P. & France, M. (1996). Nitrification/denitrification in nitrogen high-strength liquid wastes. Water Research, 30(9), 2017-2111.

Jetten, M. S., Bruijn, P. & Kuenen, J. G. (1997). Hydrixylamine metabolism in Pseudomonas PB16: involvement of a novel hydroxylamine oxidoreductase. Antonie van Leeuwenhoek, 71, 69-74.

Jetten, M., Logemann, S., Muyzer, G., Robertson, L. A., DeVries, S., van Loosdrecht, M. & Kuenen, J. G. (1997). Novel principles in the microbial conversion of nitrogen compounds. Antonie Van Leeuwenhoek International Journal of General and Molecular, 71(1-2), 75-93.

Kim, D. J. & Joo, S. H. (1999). Nitrite accumulation in a biological aerated filter by oxygen limitation. IAWQ Conference on Biofilm Systems, New York, USA, Oct.

Krul, J. M. (1976). Dissimilatory nitrate and nitrite reduction under aerobic conditions by an aerobically and anaerobically grown Alcaligenes sp. and by activated sludge. Journal of Applied Bacteriology, 40(3), 245-260.

Kuai, L. & Verstraete, W. (1998). Ammonia removal by the oxgen-limited autotrophic nitrification denitrification System . Applied and Environmental Microbiology, 64(11), 4500-4506.

Kuenen, J.G. & Robertson, L. A. (1994). Combined nitrification-denitrification process. FEMS Microbiol Rev, 15(2), 109-117.

Kwon, H. B., Byung, S. J., Ben, K. & Jon, D. Y. (2003). Recycling waste oyster shells for eutrophication control, Resources, Conservation and Recycling, 41(1),75-82.

Ling, J. & Chen, S. (2005). Impact of organic carbon on nitrification performance of different biofilters. Aquacultural Engineering, 33, 150-162.

Liu,Y. X.,Yang, T. O., Yuan, D. X. & Wu, X. Y. (2010). Study of municipal wastewater treatment with oyster shell as biological aerated filter medium. Environmental Science Research Center, 254(1-3), 149-153.

Malina, J. F. & Pohland, F. G. (1992). Design of anaerobic processes for the treatment of industrial and municipal wastes. Technomic Publishing Co., Washington, DC.

McCarty, P. L. (1964). Anaerobic waste treatment fundamentals, Part Π-Environment requirements and control. Public Works, 95, 91-94.

Meiberg, J. B. M., Bruinenberg, P. M. & Harder, W. (1980). Effect of dissolved oxygen tension on the metabolism of methylated amines in Hyphomicrobium X in the absence and presence of nitrate: evidence for “aerobic” denitridication. Journal of General Microbiology, 120(10), 453-463.

Meng, Q. J., Yang, F. L., Liu, L. F. & Meng, F. G. (2008). Effects of COD/N ratio and DO concentration on simultaneous nitrification and denitrification in an airlift internal circulation membrane bioreactor. Journal of Environmental Sciences-China, 20(8), 933-939.

Metcalf & Eddy (1991). “Wastewater Engineering:Treatment, Disposal, Reuse”. 3rdEd, McGraw-Hill, Inc, New York.

Michaud, L., Blancheton, J. P. & Bruni, V. (2006). Effect of particulate organic carbon on heterophic bacterial populations and nitrification efficiency in biological filters. Aquacultural Engineering, 34(3), 224-233.

Mulder, A., van de Graaf A. A., Robertson, L. A. & Kuenen, J. G. (1995). Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiology Ecology, 16(3), 177-184.

Munch, E.V., Lant, P. & Keller, J. (1996). Simultaneous nitrification and denitrification in bench-scale sequencing batch reactors. Water Research, 30(2), 277-284.

Nakano, K., Iwasawa, H. & Ito, O. (1994). Improved simultaneous nitrification and denitrification in a singte reactor by using two different immobilization carriers with specific oxygen transfer characteristics. Bioprocess Biosyst Eng, 26, 141-145.

Ng, W. J. (1987). Aerobic treatment of piggery wastewater with the sequencing batch reactor. Biological wastes. 22(4):285-294.

O’Neill, M. & Horan, N. J. (1995). Achieving simultaneous nitrification
and denitrification of wastewaters at reduced cost. Water Science and Technology, 32(9-10), 303-312.

Obaja, D., Mace, S., Costa, J. & Mata-Alvarez, J. (2003). Nitrification, denitrification and biological phosphorus removal in piggery wastewater using a sequencing batch reactor. Bioresource Technology, 87(1), 103-111.

Okabe, S., Oozawa, Y., Hirata, K. & Watanabe, Y. (1996). Relationship between population dynamics of nitrifiers in biofilms and reactor performance at various C:N ratios. Water Research, 30(7),1563-1572.

Okamoto, K.,Washiyama, K. & Harada, Y. (1990). Renovation of an extended aeration plant for simultaneous biological removal of nitrogen and phosphorus using oxic-anaerobic-oxic process. Water Science and Technology, 22(7):61-68.

Olcay, T., Isik, K., Derin, O. & Saadettin, K. (1997). Ammonia removal by magnesium ammonium phosphate precipitation in industrial wastewaters. Water Science and Technology, 36(2-3), 225-228.

Pai, S. L., Chong, N. M. & Chen, C. H. (1999). Potential applications of aerobic denitrifying bacteria as bioagents in wastewater treatment. Bioresource Technology, 68(2), 179-185.

Payne, W. J. (1973). Reduction of Nitrogenous Oxides by Microorganisms. Bacteriological Reviews. 37(4), 409-452.

Peng, Y. Z., Chen, T. & Tian, W. J. (2003). Nitrogen removal via nitrite at normal temperature in A/O process. J. Environ. Sci, 38 (6), 1007-1015.

Pochana, K. & Keller, J. (1999). Study of factors affecting simultaneous nitrification and denitrification(SND). Water Science and Technology, 39(6), 61-68.

Pochana, K., Keller, J. & Lant, P. (1999). Model development for simultaneous nitrification and denitrification. Water Science and Technology, 39(1), 235-243.

Puznava, N., Payraudeau, M. & Thornberg, D. (2001). Simultaneous nitrification and denitrification in biofilters with real-time aeration control, Water Science Technology, 43(1), 269-276.

Qiao, X., Zhang, Z., Chen, Q. & Chen, Y. (2008). Nitrification characteristics of PEG immobilized activated sludge at high ammonia and COD loading rates. Desalination, 222, 340-347.

Qinxue, W., Chen, Z. & Shi, H. (2008).T-RFLP detection of nitrifying bacteria in a fluidized bed reactor of achieving simultaneous nitrification-denitrification. Chemosphere, 71, 1683-1692.

Robertson, L. A., van Niel, E. J., Torremans R. M. & Kuenen, J. G. (1988). Simultaneous nitrification and denitrification in aerobic chemostat cultures of Thiosphaera pantotropha. Appl Environ Microbiol, 54(11), 2812-2818.

Sang-Ill, L., Jong, H. P., Kwang. B. K. & Ben, K. (1997). Effect of fermented swine wastes on biological nutrient removal in sequencing batch reactors. Water Research, 31(7), 1807-1812.

Siegrist, H., Reithaar, S. & Koch, G. (1998). Nitrogen loss in a nitrifying rotating contactor treating ammonium rich wastewater without organic carbon. Water Science and Technology , 38(8-9), 931-933.

Skerman, V. B. D., Lack , J. & Millis, N. (1951). Influence of oxygen concentration on the reduction of nitrate by a Pseudomonas sp. In the growing culture. Australian Journal of Scientific Research Series B-Biological Sciences, 4(4), 511-525.

Staab, K. F., Stotz, G., Bardtke, D. & Spang, H. J. (1983). Investigations on treatment of waste from pig fattening units up to a quality suitable for water course discharge. Agricultural Waste, 5, 189-204.

Stijn, W. V. H., Eveline, I. V., Josefa, L. T., Brecht, D., Mark, C. V. L. & Peter, A. V. (2007). Influence of temperature and pH on the kinetics of the Sharon nitritation process. Chemical Technology and Biotechnology, 82, 471-480.

Stratful, I., Scrimshaw, M. D. & Lester, J. N. (2001). Conditions influencing the precipitation of magnesium ammonium phosphate.Water Research, 35(17), 4191-4199.

Sybil, P. S. (1988). Denitrification in freshwater and coastal marine ecosystems: Ecological and geochemical significance. Philadelphia Academy of Natural Sciences. Division of Environmental Research, 33(4-2), 702-724.

Takaaki, M., Chung, M. L. & Xing, D. F. (1995). Nitrogen and phosphorus removal for swine wastewater using intermittent aeration batch reactor followed by ammonium crystallization process. Water Research, 29(12), 2643-2650.

Tchobanoglous, G., Burton, F. L. & Stensel, H. D. (2004). Wastewater engineering treatment and reuse, 4th Ed. Metcalf & Eddy Inc., McGraw-Hill, New York, pp. 750.

Than, K. & Ajit, P. A. (2004). Novel microbial nitrogen removal processes. Biotechnology Advances. 22(7), 519-532.

Van de Graaf, A. A., de Bruijn, P., Robertson, L. A., Mike, S. M. J. & Kuenen, J. G. (1996). Autotrophic growth of anaerobic ammonium oxidizing microorganisms in a fluidized bed reactor. Microbiology, 142(8), 2187-2196.

Voets, J. P.,Vanstaen, H. & Verstraete, W. (1975). Removal of nitrogen from highly nitrogenous wastewaters. Water Pollution Control Fed, 47(2), 394-398.

Wang, F., Lu, S., Wei, Y.J. & Ji, M. (2009). Characteristics of aerobic granule and nitrogen and phosphorus removal in a SBR. Journal of Hazardous Materials, 164(2-3), 1223-1227.

Wildorer, P. A.,Robert, L. I. & Mervyn, C.G. (2000). Scientific and Technical Report on Sequencing Batch Reactor Technology.

Xiong, X. J. & Ye, Z. L. (2006). Study of nitrification behavior in aerated biofilters using oyster shell carrier. Aquatic Ecosystem Health & Management, 9(1), 15-19.

Yang, S., Yang, F. L., Fu, Z. M. & Lei, R. B. (2009). Comparison between a moving bed membrane bioreactor and a conventional membrane bioreactor on organic carbon and nitrogen removal. Bioresource Technology, 100(8), 2369-2374.

Yoo, K., Ahn, K. H., Lee, H. J., Lee, K. H., Kwak, Y. J. & Song, K. G. (1999). Nitrogen removal from synthetic wastewater by simultaneous nitrification and denitrification via nitrite in an intermittently-aertes reactor. Water Research, 33(1), 145-154.

Zdybiewska, M. W. & kula, B. (1991). Removal of ammonia nitrogen by the precipitation method , on the example of some selected waste waters. Water Science & Technology, 24(7), 229-234.

Zeng, R. J., Lemaire, R., Yuan, Z. & Keller, J. (2003). Simultaneous nitrification, denitrification, and phosphorus removal in a lab-scale sequencing batch reactor. Biotechnology and Bioengineering, 84(2), 170-178.

Zhang, L. Q., Wei, C. H., Zhang, K. F., Zhang, C. S., Fang, Q. & Li, S. G. (2009). Effects of temperature on simultaneous nitrification and denitrification via nitrite in a sequencing batch biofilm reactor. Bioprocess and Biosystems Engineering, 32(2), 175-182.

Zhao, H., W., Donald, S. & Mavinic. (1999). Controlling factore for simultaneous nitrification and denitrification in a two stege intermittent aeration process
treating domestic sewage. Water Research, 33(4):961-970.

Zhu, S. & Chen, S. (2001). Effects of organic carbon on nitrification rate in fixed film biofilters. Aquacultural Engineering, 25(1), 1-11.

王英閣、胡宗泰 (2008),生物脫氮新工藝研究進展。上海化工學報,33(11),1-5。

王淑瑩、曾薇、董文藝 (2002),SBR法短程硝化及過程控制研究。中國給水排水, 18(10),1-5。

王新為、孔慶鑫、金敏、宋農、鄭金來、古長慶、李君文 (2003),pH值與曝氣對硝化細菌硝化作用的影響。軍事醫學科學院衛生學環境醫學研究所學報。21(3),319-322。

王學江、夏四清、陳玲、趙建夫 (2006),DO對MBBR同步硝化反硝化生物脫氮影響研究。同濟大學學報,34(4),514-519。

王曉霞 (2001),高含氮化纖廢水生物處理技術研究。長安大學碩士論文。

北尾高嶺 (1983),接觸曝氣法應用處理小規模下水道之現狀與未來。用水廢水,25(1),27-32。

田淼、張永祥、張粲、張麗雲、姚偉濤 (2010),DO與MBBR反應器同步硝化反硝化脫氮關係研究。中國水運。10(5),124-126。

石利軍、王旭江、楊鳳林、王炳鈞、張興文 (2005),循環流生物膜反應器同時硝化反硝化實驗研究。環境科學與技術。28(6),93-95。

石秉鑫(2001),以固定之好氧脫硝菌應用於同槽硝化脫硝反應之可能性研究。國立台灣大學環境工程學研究所碩士論文。

江晃榮 (1987),生物技術與污染防治。通俗科學講座,212(44)。

行政院環境保護署網站(2011)。(http://erarc.epa.gov.tw/230/201111141730/archive/wq.epa.g/WMD/2004/river3.htm)。2011.1.14。

行政院環境保護署網站(2011)。(http://media.epa.gov.tw/mm_ch/VideoContent.aspx?GalleryID=72cb6320-e429-4340-a2f1-3cfb834f23ba&CategoryID=1b8a2a9e-3a09-4383-bc44-72a276a70315&path=11)。2011.2.18。

吳永明 (2005),亞硝化-厭氧氨氧化聯合工藝及其處理高氨氮廢水的研究。湖南大學碩士論文。

吳立波 (2007),厭氧氨氧化工藝在廢水脫氮領域中的應用進展。南開大學學報,25(5),3-7。

吳建彬 (2004),厭氣阻板反應器串聯活性污泥系統處理養豬廢水。國立成功大學環境工程學系碩士論文。

吳姝媛 (2007),OGO反應系統同時硝化反硝化脫氮試驗研究。重慶大學碩士論文。

呂錫武、李峰、稻森悠平 (2000),氨氮廢水處理過程中的好氧反硝化。給水排水。26(4),17-20。

李忠剛、易紅星 (2008),生物脫氮技術研究進展。甘肅科技, 24(20),97-99。

李粉玲、趙慶鵬 (2010),城市生活污水處理中活性污泥法與生物膜法工藝綜述與比較。污水處理廠應用科技。9,68-69。

李紹峰、崔崇威、黃君禮、劉玉強 (2007),DO和HRT對MBR同步硝化反硝化影響研究。哈爾濱工業大學學報,39(6),887-890。

李賢勝 (2006),生物膜法同步硝化反硝化脫氮效果研究。 昆明理工大學碩士論文。

李賢勝、施永生、王琳 (2009),溶解氧對同步硝化反硝化脫氮影響研究。昆明理工大學建築工程學院。給水排水。35,167-169。

周丹丹、馬放、董雙石、王宏宇、王鶴立 (2007),溶解氧和有機碳源對同步硝化反硝化的影響。環境工程學報,1(4),25-28。

林金鑾、張可方、方茜、張朝升 (2009),碳源濃度對同步硝化反硝化協同除磷影響研究。環境科學與技術。32(9),5-8。

林琳、堵國成、陳堅 (2003),厭氧氨氧化生物脫氮技術的研究進展。江南大學學報,33(2),51-55。

邱鈺棋 (2008),匹配厭氧氨氧化的亞硝化工藝處理養豬廢水的試驗研究。西南交通大學碩士論文。

候文佳、尹連慶 (2005),短程硝化-反硝化生物脫氮工藝的研究進展。廢水處理,5,37-40。

孫錦宜 (2003),含氮廢水處理技術與應用。北京化學工業出版社。

徐偉鋒、鄭淑平、孫力平、張芳 (2003),生物膜法同步硝化反硝化影響因素的分析。天津城市建設學院學報,9(1),4-7。

徐潔泉、揚可俊、劉膺虎、黃志龍、徐可南 (1991),集約化豬場糞便污水沼氣發酵綜合處理系統的生產試驗。中國沼氣,9(3),26-29。

馬勇、王淑瑩、曾薇 (2006),A/O生物脫氮工藝處理生活污水中試(一)短程硝化反硝化的研究。環境科學學報,26(5),703-709。

高大文、彭永臻、王淑瑩 (2005),高氮豆製品廢水的亞硝酸型同步硝化反硝化生物脫氮工藝。化工學報。56(4),699-704。

高景峰、彭永臻、王淑瑩 (2005),有機碳源對低碳氮比生活污水好氧脫氮的影響。安全與環境學報。5(6),11-15。

張小玲、李斌、楊永哲 (2004),低DO下的短程硝化及同步反硝化。中國给水排水,20(5),13-16。

張希衡 (1996),廢水厭氧生物處理工程。中國北京環境科學出版社。

張益豪 (2010),不同生物介質之同時硝化與脫硝效率。國立台南大學碩士論文。

張樹德 (2008),厭氧氨氧化生物濾池脫氮工藝特性研究。北京工業大學碩士論文。

張鵬 (2002),低氧條件下同時硝化反硝化工藝研究。同濟大學碩士論文。

曹令通 (2009),有機物濃度對硝化作用影響的試驗研究。太原理工大學碩士論文。

曹茂盛、李大勇、荊天輔 (1999),材料物裡導論。哈爾濱工業大學出版社。213。

莊嚴、陳立偉、夏濤、蔡天明、周立祥 (2008),醫藥化工廢水同步硝化反硝化的研究及工程應用。農業科學。36(23),10170-10172。

郭猛德、蕭庭訓、王政騰 (2008),養豬三段式廢水與污泥處理技術,第五屆畜牧污染防治技術研討會論文集。

陳志銘 (2002),UASB串聯活性污泥系統處理養豬廢水之動力行為。國立成功大學環境工程學系碩士論文。

陳勇成 (2000),AOAO處理程序添加固定化微生物處理養豬廢水之研究。國立雲林科技大學環境與安全工程系碩士論文。

陳睿斌 (2001),應用分子生物技術進行生物處理程序菌相分析之研究。國立中央大學碩士論文。

陳鐘榮 (2006),應用礫石/碎石浸水式生物濾床削減河川含氮量之研究。國立中興大學碩士論文。

陸天友、唐忠德 (2007),碳氮比對懸浮填料生物反應器氮去除效果的影響。地球與環境。35(1),74-78。

傅雷鳴 (2007),曝氣膜生物反應器處理模擬生活污水研究。 南京理工大學碩士論文。

曾四恭 (1990),台灣省養豬廢水處理技術之研究。國立台灣大學環境工程研究所研究報告第238號,21-28。

曾四恭 (1992),豬糞尿廢水中氮磷去除方法之研究。國立台灣大學環境工程研究所研究報告第310號,51。

黃正義、吳松雄 (1981),豬舍廢水處理實務。第七屆廢水處理技術研討會論文集,353-360。

黃泰維 (2003),厭氣阻板反應器/上流式厭氧污泥床反應器處理養豬廢水。國立成功大學環境工程學系碩士論文。

黃繼國、高文翰、董莉莉、孟玉麗、周秀、楊柳 (2010),ABR-生物接觸氧化工藝處理低碳氮比生活污水試驗。吉林大學學報,40(5),1163-1169。

楊淑鉢 (1995),資源化多孔陶瓷擔體處理工業區綜合廢水之研究。國立中央大學環境工程研究所碩士論文。

楊雅斐 (2004),三段生物程序中好氧硝化槽功能評估與分生檢測生態研究。國立成功大學環境工程學系碩士論文。

董立民 (1997),以不同氮濃度之養豬廢水對無(厭)氧-好氧系統去除效率及放流水水質之影響。國立台灣大學環境工程研究所碩士論文。

董佳駒 (2007),SBBR工藝高效硝化及污泥減量研究。廣州大學碩士論文。

董濤 (2007),SBR反應器中同步硝化反硝化影響因素研究。天津大學碩士論文。

鄒聯沛 (2001),膜生物反應器處理污水的性能及其應用研究。哈爾濱工業大學博士論文。

趙冰怡、陳英文、沉樹寶 (2009),C/N比和曝氣量影響 MBR同步硝化反硝化的研究。環境工程學報。3(3),400-404。

劉志華 (2004),一體式膜生物反應器的運行研究。 昆明理工大學碩士論文。

歐陽嶠暉 (1984),台灣省住宅及都市發展局,環境工程技術研究班講義集,6-1~6-24。

蔣勝韜、管玉江、張威、白書立、萬金保 (2010),膜生物反應器中同步硝化反硝化機制及影響因子探討。環境工程學報。4(7),1551-1554。

鄭平 (1999),厭氧氨氧化技術的研究。浙江大學碩士論文。

鄭福生、鄭淑文 (2004)。鹼度對厭氧體系的影響分析。大連大學生物工程學院。中國高新技術企業技術論壇。65-67。

盧俊平 (2005),亞硝化-厭氧氨氧化生物脫氮工藝研究。中國農業大學碩士論文。

聶卓娜 (2005),低溫、低碳源對同時硝化反硝化污水生物處理系統的影響研究。重慶大學碩士論文。

魏海娟 (2009),移動床反應器同步硝化反硝化脫氮特性及機理研究。北京工業大學博士論文。

鐘理、譚春偉 (2002),氨氮廢水降解技術進展。化工科技,10(2),59-62。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top