|
Reference [1] Y. Avrithis, Y. Kalantidis, E. Anagnostopoulos, and I.Z. Emiris, W0eb- scale image clustering revisited, in Proceedings of the ICCV, 2015, pp. 1502- 1510. [2] G. R. Ayers, and J. C. Dainty, Iterative blind deconvolution method and its applications, Optics letters 13(7), 547-549, (1988). [3] A. Babenko, and V. Lempitsky, Additive quantization for extreme vector compression, in Proceedings of the CVPR, 2014, pp. 931-938. [4] S. Bianco, L. Celona, and R. Schettini, “Robust smile detection using convolutional neural networks,” Journal of Electronic Imaging, 2016, 25(6), pp. 063002-063007. [5] T. F. Chan, and C. K. Wong. Total variation blind deconvolution, IEEE Transactions on Image Processing 7(3), 370-375 (1998). [6] Y. Chauvin, and D.E. Rumelhart, Backpropagation: Theory, Architectures, and Applications, Psychology Press, 1995. [7] S. Cho, and S. Lee. Fast motion deblurring, In TOG, volume 28, pp. 145, ACM, 2009. [8] A. Goldstein, and R. Fattal, Blur-kernel estimation from spectral irregularities, in ECCV, pp. 622-635 (2012). [9] H. Jégou, M. Douze, and C. Schmid, Product quantization for nearest neighbor search, Trans. PAMI 33 (1) (2011) 117-128, doi:10. 1109/TPAMI. 2010, 57. [10] R. E. Kalman, “A new approach to linear filteting and prediction problems', ” Joural of Basic Engineering, Vol. 82, No. 1, pp. 35-45, (1960). [11] D. Krishnan, T. Tay, and R. Fergus, “Blind deconvolution using a normalized sparsity measure,” in CVPR, 2011 IEEE Conference on IEEE, 2011, pp. 233-240. [12] A. Levin, Y. Weiss, F. Durand, and W. T. Freeman, Efficient marginal likelihood optimization in blind deconvolution. In IEEE Conference on CVPR, pp. 2657-2664 (2011). [13] A. Levin, Y. Weiss, F. Durand, and W. T. Freeman, Understanding blind deconvolution algorithms, TPAMI, 33(12):2354-2367, 2011. [14] S. Lloyd, Least squares quantization in PCM, IEEE Trans. Inf. Theory 28 (1982) 129-137, doi:10. 1109/TIT, 1982, 1056489. [15] L. Mai, and F. Liu, Kernel fusion for better image deblurring, In: IEEE Conference on CVPR, pp. 371-380 (2015). [16] A. Mittal, R. Soundararajan, and A. C. Bovik, Making a completely blind image quality analyzer, IEEE Signal Processing Letters 20(3), pp. 209-212 (2013). [17] M. Muja, and D. G. Lowe, Scalable nearest neighbor algorithms for high dimensional data, IEEE Trans. Pattern Anal. Mach. Intell, 36 (2014) 2227-2240, doi:10. 1109/ TPAMI, 2014, 2321376. [18] Q. Shan, J. Jia, and A. Agarwala, High-quality motion deblurring from a single image, In TOG, volume 27, pp. 73. ACM, 2008. [19] J. Shi, and J. Malik, Normalized cuts and image segmentation, Trans. PAMI 22 (8) (2000) 888-905, doi:10. 1109/34. 868688. [20] J. Sivic, and A. Zisserman, Video Google: a text retrieval approach to object matching in videos, in Proceedings of the ICCV, 2003, pp. 1470-1477, doi:10. 1109/ CCV. 2003, 1238663. [21] J. Pan, Z. Hu, Z. Su, and M. H. Yang, “Deblurring text images via l0- regularized intensity and gradient prior,” in Proceedings of the IEEE Conference on CVPR, 2014, pp. 2901-2908. [22] O. Whyte, J. Sivic, and A. Zisserman, “Deblurring shaken and partially saturated images,” International journal of computer vision, vol. 110, no. 2, pp. 185-201, 2014. [23] X. Wu, V. Kumar, J. R. Quinlan, J. Ghosh, Q. Yang, H. Motoda, G. J. McLachlan, A. Ng, B. Liu, P. S. Yu, Z. H. Zhou, M. Steinbach, D. J. Hand, and D. Steinberg, Top 10 algorithms in data mining, Knowl. Inf. Syst. 14(1) (2007) 1- 37, doi:10. 1007/s10115-007-0114-2. [24] L. Xu, S. Zheng, and J. Jia, “Unnatural L0 sparse representation for natural image deblurring,” in Proceedings of the IEEE Conference on CVPR, 2013, pp. 1107-1114. [25] R. Yan, and L. Shao, ‘Blind image blur estimation via deep learning’, IEEE Transactions on Image Processing, 2016, 25, (4), pp. 1910-1921. [26] H. Zhang and L. Carin, Multi-shot imaging: joint alignment, deblurring and resolution-enhancement, in CVPR, pp. 2925-2932, 2014. [27] Y. Zhao, and G. Karypis, Empirical and theoretical comparisons of selected criterion functions for document clustering, Mach. Learn. 55 (2004) 311-331, doi:10. 1023/B:MACH, 0000027785, 44527, d6. [28] L. Zhong, S. Cho, D. Metaxas, S. Paris, and J. Wang, Handling noise in single image deblurring using directional filters, In IEEE Conference on CVPR, pp. 612-619 (2013).
|