跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/06 02:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳俊丞
研究生(外文):Chun-ChengChen
論文名稱:應用諧波雷達之物件偵測電路
論文名稱(外文):Object Location Identification System Using Microcontroller-based Harmonic Reflection Detection Circuit
指導教授:黃尊禧
指導教授(外文):Tzuen-Hsi Huang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:79
中文關鍵詞:天線陣列壓控振盪器功率放大器整流電路
外文關鍵詞:antenna arrayvoltage controlled oscillatorpower amplifierrectifier
相關次數:
  • 被引用被引用:1
  • 點閱點閱:343
  • 評分評分:
  • 下載下載:34
  • 收藏至我的研究室書目清單書目收藏:0
本論文為設計一應用諧波雷達之物件偵測感測電路,操作頻率主要為915 MHz與1830 MHz兩個頻帶,配合實驗室建置之天線陣列(2×2 Antenna Array)與實作的雙頻天線(Dual-band Antenna)作為此電路中的功率發射端(Power Emitter)與諧波反射(Harmonic Reflection)接收端。此外,亦開發整流電路(Rectifier)和Arduino微控制器(Microcontroller)作為物件偵測與控制之用。
本論文以開發偵測感測電路之實作整合,並包含一壓控振盪器(Voltage Control Oscillator, VCO)以及E類功率放大器(Class-E Power Amplifier)之整合,作為部分偵測感測電路之傳能端IC實作設計。本論文之電路是接收功率發射端訊號並反射諧波能量,借此得知待測物之位置。雙頻天線採用八木天線(Yagi-Uda Antenna)之架構來設計,藉此可提高天線之方向性以及增益,本論文之雙頻天線頻率為915 MHz及1830 MHz,其反射損失(S11)分別為-18.21 dB及-16.47 dB。整流電路使用微帶線以及一可操作於高頻之蕭特基二極體(HSMS-2865)所設計,使用微帶線設計可降低電路的體積以及有較高的頻寬,此整流電路輸入0 dBm至14 dBm可整流出0.09 V至1.31 V的直流電壓。晶片製作乃使用國家晶片中心(CIC)所提供之TSMC 180-nm 1P6M CMOS製程所完成。
本論文依照章節將說明各個子電路之設計方式、模擬結果、晶片量測數據分析,最後並將作一總結。本論文之晶片中的壓控振盪器架構,是使用電感電容共振腔壓控振盪器(LC-tank VCO),藉此提升整體系統於 915 MHz下之相位雜訊表現,當此壓控振盪器之振盪頻率為915 MHz時,輸出功率為大於0 dBm;功率放大器則選用E類之功率放大器,此類放大器在理論上之放大效率能達到100%,並且較容易實現,本次下線晶片之壓控振盪器功率消耗為5.49 mW,整體架構之功率消耗為87.21 mW,晶片面積為2.89 mm2。

In our thesis, we designed a object identification system by detecting the harmonic power wich our operated frequency is 915 MHz. The whole construction is including a dual-band Yagi- Uda antenna, Arduino microcontroller, RF-DC rectifier. We also had tape out a power transmission circuit chip which include a voltage controlled oscillator (VCO) and a Class-E preamp for emulating an RF power source.
From the measurement results of object identification system, the proposed S11 of dual-band Yagi-Uda antenna are -16.438 dB and -17.385 dB at 915 MHz and 1830 MHz. The RF-DC rectifier can export an output voltage of 0.09 V to 1.31 V DC voltage from 0 dBm to 14 dBm as RF power source. The whole object identification system can get the increment voltage more than 0.17 V to identify the existence of object.
The total chip area including VCO and Class-E preamp is 2.89 mm2. As for the VCO, the output power is 1.175 dBm at 915 MHz, turing range is 231 MHz, the power consumption is 5.49 mW and the phase noise is -119.22 dBc/Hz at 1MHz frequency offset. The output power of whole chip design (VCO+Class-E preamp) is 1.91 dBm and total power consumption is 87.21 mW.

第一章 緒論 1
1.1 研究背景與動機 1
1.2 論文架構概述 3
第二章 諧波雷達偵測電路 4
2.1 諧波雷達偵測電路簡介 4
2.1.1 天線(Antenna) 4
2.1.2 八木天線(Yagi-Uda Antenna) 8
2.1.3 八木天線原理簡述 9
2.1.4 雙頻八木天線實作設計與模擬結果 10
2.2 整流電路與Arduino微控制器 17
2.2.1 蕭特基二極體(Schottky Diode) 17
2.2.2 RF-DC整流電路設計 18
2.2.3 Arduino 微控制器 22
第三章 傳能端積體電路設計與實作 25
3.1 壓控振盪器架構(Voltage Control Oscillator, VCO) 25
3.1.1 環形振盪器(Ring Oscillator) 25
3.1.2 電感電容共振腔壓控振盪器 25
3.1.3 環形振盪器與電感電容共振腔壓控振盪器比較 27
3.1.4 電感電容共振腔壓控振盪器分析 28
3.1.5 互補式電感電容共振腔壓控振盪器 31
3.1.6 電感電容共振腔壓控振盪器之模擬結果 38
3.2 前置功率放大器(Preamplifier, Preamp) 42
3.2.1 放大器介紹 42
3.2.2 放大器設計規格 45
3.2.3 E類放大器設計與模擬結果 51
第四章 偵測電路與晶片量測結果 60
4.1 偵測電路量測結果 60
4.2 傳能端積體電路量測結果 67
第五章 結論與未來規劃 75
5.1 結論 75
5.2 未來規劃 76
參考文獻 77

[1]S. Hui, W. Zhong, and C. Lee, “A critical review of recent progress in mid-range wireless power transfer, IEEE Trans. Power Electron., vol. 29, no. 9, pp. 4500–4511, Sep. 2014.
[2]Powercast-overview,0PowercastCorporation,02012,0(available)http://www.powercastco.com/
[3]S.-F. Yang; C.-C. Chen; T.-H. Huang; C.-Y. Lu; P.-J. Chung Design of a 2×2 antenna-array RF power emitter with object detection function for sensor location identification, in 2015 International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO 2015), Jun. 2015, pp. 65 – 66.
[4]S.-F. Yang, T.-H. Huang, C.-C. Chen, C.-Y. Lu, and P.-J. Chung,Beamforming power emitter design with 2x2 antenna array and phase control for microwave/RF-based energy harvesting, in Wireless Power Transfer Conference (WPTC2015), May 2015, pp. 1-4.
[5]張天錫, ‘‘基礎應用電磁學,’’ 東華書局, 2011.
[6]Hucheng Sun, Far-Field Wireless Power Transmission and Ambient RF Energy Harvesting: Concepts, Designs, Applications, 1rd Edition, San Bernardino: Scholars' Press, 2016.
[7]C.-C. Chen, T.-H. Huang, S.-F. Yang, F.-M. Wu, and P.-J. Chung, Chargeable object location identification technique for antenna-arrayed RF power emitter using microcontroller-based harmonic reflection detection circuit, in Wireless Power Transfer Conference (WPTC2016), May 2016, pp. 1-3.
[8]C. A. Balanis, Antenna Theory: Analysis and Design, 3rd Edition, New York: J. Wiley & Sons, 2005.
[9]鄧聖明, 蔡慶龍, 柏小松, ‘‘天線設計與應用-使用ANSYS HFSS模擬器,’’ 鼎茂圖書出版股份有限公司, 2012.
[10]AVAGO Technologies / HSMS-2865 High frequency detector diode [Online]. Available:http://www.avagotech.com/products/wireless/diodes/schottky/hsms-2865
[11]Arduino / Introduction [Online]. Available: https://www.arduino.cc/en/Guide/ Introduction
[12]J. R. Long, “Monolithic transformers for silicon RF IC design,IEEE J. Solid-State Circuits,vol. 35, no. 9, pp.1368-1382, Sep. 2000.
[13]J.-A. Hou and Y.-H. Wang,“A 7.9 GHz low-power PMOS ColpittsVCO using the gate inductive feedback,IEEE Microw. Wireless Compon. Lett.,vol. 20, no. 4, pp. 223-225, Apr. 2010.
[14]劉深淵, 楊清淵, “鎖相迴路,"滄海書局, 2006.
[15]高曜煌, “射頻鎖相迴路IC設計,"滄海書局, 2005.
[16]Prof. K.-W. Cheng, Lecture Notes, Dept. of EE, NCKU.
[17]B. Razavi, RF Microelectronics, 2nd edition, Prentice Hall, 2012.
[18]Zhaofeng Zhang, A. Pun, and J. Lau, “Interference issues in silicon RFIC design, in IEEE Radio Frequency Integrated Circuits Symposium, pp. 119-122, Jun 1998.
[19]C. N. Chiu, Y. C. Chang, H. C. Hsieh, and C. H. Chen, “Suppression of spurious emissions from a spiral inductor through the use of a frequency-selective surface, IEEE Trans. Electromagn. Compat., vol. 52, no. 1, pp. 56–63, Feb. 2010.
[20]Z. Li, Kenneth O, ‘‘A900-MHz 1.5-V CMOS VoltageControlled Oscillator Using Switched Resonators With a Wide Tuning Range,’’ IEEE Microwave and Wireless Components Letters, vol. 13, No. 4, pp.137- 139, April 2003.
[21]H. R. Kim et al., ‘‘A very Low-Power Quadrature VCO With Back-Gate Coupling’’, IEEE J.Solid-State Circuits,vol.39, No.6, pp.952 - 955, June 2004.
[22]Qi Xin, ‘‘A novel dual-band Yagi-Uda antenna for wireless communications’’, IEEE Antennas Propagation and EM Theory (ISAPE), pp.289-292, Dec 2010.
[23]邱煥凱, 林貴城, “ADS應用於射頻功率放大器設計與模擬,"國立清華大學出版社, 2015.
[24]Paolo Colantonio, Franco Giannini, Ernesto Limiti, RF AND MICROWAVE SOLID STATE POWER AMPLIFIER, J. Wiley & Sons, 2009.
[25]P2110-EVB Rev.B Datasheet, Powercast Corporation, 2010, (available) http://www.powercastco.com/
[26]P. Manikandan, ‘‘Design of CMOS class-E power amplifier for WLAN and bluetooth applications,’’ Devices, Circuits and Systems (ICDCS), pp.81-88, March 2012.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊