跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.88) 您好!臺灣時間:2026/02/16 01:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:盧俊吉
研究生(外文):Jyun-Ji Lu
論文名稱:矩形流道裝置壓電風扇於散熱鰭片間之熱流特性分析
論文名稱(外文):Numerical Study of Thermal and Flow Characteristics of Piezoelectric Fan Enclose Heat Sink Fins in Rectangular Channel
指導教授:蔡國隆蔡國隆引用關係
口試委員:張烔堡李弘毅
口試日期:2014-07-18
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:車輛工程系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:86
中文關鍵詞:計算流體力學電子冷卻壓電風扇散熱器
外文關鍵詞:Computational Fluid DynamicsElectronic CoolingPiezoelectric fanHeat sink
相關次數:
  • 被引用被引用:1
  • 點閱點閱:243
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來電子產品趨向輕薄化發展,散熱問題面臨更大的挑戰,壓電風扇具有體積小、噪音小、低耗能、頻率響應快速等優點,正好符合電子產品嚴格的散熱需求。壓電材料的逆電壓效應使壓電晶片產生高頻振盪,薄板上下擺動造成周圍流體流動產生對流效應,進而達到散熱效果。本研究將壓電風扇裝置於散熱鰭片間,使低溫流體更有效的導入散熱器內,將熱能於散熱鰭片間混合帶走,利用計算流體力學軟體ANSYS CFD/Fluent模擬,並以暫態流場探討各項參數下對於整體冷卻性能之差異,探討參數包括壓電風扇尖端至散熱器前端之距離(Lg)、鰭片列(n)、鰭片高度(Hf)與鰭片間距(G)等,經求解器計算後,以紐賽爾數(Nu)和熱阻值(Rth)等數值作為性能表現依據。研究結果顯示,當壓電風扇尖端放置於散熱器前端,其散熱效果較佳,隨著鰭片高度上升,有效增加散熱面積,提升散熱性能,而散熱器封閉與否取決於鰭片數與壓電風扇擺放位置。

The converse piezoelectric effects of piezoelectric material make piezoelectric chip bringing high frequency damping, plastic fan flapping fluid around bringing convection, and then achieve heat dissipation. This study discuss that piezoelectric fan enclose heat sink fins let cryogenic fluid into heat sink efficacious and heat is took away by heat sink fins. Using fluid dynamic software, ANSYS CFD/Fluent, calculate transient flow field in different parameters, it includes the distance between piezoelectric fan and heat sink(Lg), fin number(n), fin height(Hf), fin gap(G). The performance of standard depends on Nusselt number(Nu) and thermal resistance(Rth) by solver. As the result, when piezoelectric fan replace on front of heat sink, the heat dissipation is useful. According to fin height raised and heat dissipation area increased enhances cooling performance effective. Whether the heat sink confined depends on fin number and piezoelectric fan position.

摘 要 i
ABSTRACT ii
誌 謝 iii
目 錄 iv
表目錄 vii
圖目錄 viii
第一章 緒論 1
1.1 前言 1
1.2 研究動機 1
1.3 文獻回顧 2
1.3.1 壓電風扇散熱特性研究 2
1.3.2 各式散熱器之特性研究 6
1.4 研究架構 10
1.5 研究目的 11
第二章 壓電材料原理特性 13
2.1 壓電效應 13
2.2 壓電材料種類 15
2.3 壓電材料應用 16
2.4 壓電風扇 16
第三章 理論模式 18
3.1 統御方程式 18
3.2 層流模型 19
3.3 動態網格守恆方程式 20
3.3.1 動態網格更新方法 21
3.4 邊界條件 23
3.4.1 入口邊界條件 23
3.4.2 出口邊界條件 23
3.4.3 壁面邊界 23
3.4.4 其他邊界條件 24
3.5 離散化 24
3.6 薄膜溫度 24
第四章 數值方法與幾何模型 25
4.1 數值方法 25
4.1.1 前處理 25
4.1.2 數值模擬 25
4.1.3 後處理 26
4.1.4 格點獨立驗證 29
4.1.5 數值穩定驗證 31
4.2 幾何模型 33
4.2.1 平板型散熱器 35
4.2.1 壓電風扇設定參數 39
第五章 數值模擬結果與討論 43
5.1 壓電風扇流場特性 44
5.2 壓電風扇尖端至散熱器前端之距離(Lg) 52
5.3 散熱器鰭片數(n) 57
5.4 散熱器鰭片高度(Hf) 63
5.5 封閉型散熱器 68
第六章 結論與未來展望 78
6.1 結論 78
6.2 未來展望與建議 79
參考文獻 80
符號彙編 84
附錄 86






[1] M. Toda, “Theory of air flow generation by a resonant type PVF2 bimorph cantilever vibrator,” Ferroelectrics, vol. 22, no. 8, 1979, pp. 911–918.
[2] M. Choi, C. Cierpka and Y-H. Kim, “Vortex formation by a vibrating cantilever,” Journal of Fluids and Structures, vol. 31, 2012, pp. 67-78.
[3] T. Acikalin and S. V. Garimella, “Analysis and prediction of the thermal performance of piezoelectrically actuated fans,” Heat Transfer Engineering, vol. 30, no. 6, 2009, pp. 487-498.
[4] T. Acikalin, S. V. Garimella, A. Raman and J. Petroski, “Characterization and optimization of the thermal performance of miniature piezoelectric fans,” International Journal of Heat and Fluid Flow, vol. 28, 2007, pp. 806-820.
[5] T. Acikalin, S. M. Wait, S. V. Garimella and A. Raman, “Experimental Investigation of the Thermal Performance of Piezoelectric Fans,” Heat Transfer Engineering, vol. 25, Issue 1, 2004, pp. 4-14.
[6] M. K. Abdullah, B. H. Murni, M. Z. Abdullah, M. A. Mujeebu, F. Hussin, H. Yusoff, N. C. Ismail, K. A. Ahmad and Z. Mohd Ripin, “Heat transfer enhancement using piezoelectric fan in electronic cooling – experimental and numerical observations,” Journal of Thermal Science and Technology, vol. 32, 2012, pp. 41-50.
[7] P. Burmann, A. Raman and S. V. Garimella, “Dynamics and topology optimization of piezoelectric fans,” IEEE Transactions on Components and Packaging Technologies, vol. 4, no. 4, 2003, pp. 592-600.
[8] S. F. Liu, R. T. Huang, W. J. Sheu and C. C. Wang, “Heat transfer by a piezoelectric fan on a flat surface subject to the influence of horizontal/vertical arrangement,” International Journal of Heat and Mass Transfer, vol. 52, 2009, pp. 2565-2570.
[9] J. H. Yoo, J. I. Hong and C. Y. Park, “Characteristics of Piezoelectric Fails using PZT Ceramics,” Proceedings of the 5th International Conference on Properties and Applications of Dielectric Materials, 1997.
[10] M. Kimber, S. V. Garimella and A. Raman, “Local Heat Transfer Coefficients Induced by Piezoelectrically Actuated Vibrating Cantilevers,” International Journal of Heat Transfer, vol. 129, no. 9, 2007, pp. 1168-1176.
[11] M. Kimber and S. V. Garimella, “Measurement and prediction of the cooling characteristics of a generalized vibrating piezoelectric fan,” International Journal of Heat and Mass Transfer, vol. 52, no. 19-20, 2009, pp. 4470-4478.
[12] M. Kimber and S. V. Garimella, “Cooling Performance of Arrays of Vibrating Cantilevers,” International Journal of Heat Transfer, vol. 131, 2009, pp. 1114011-1114018.
[13] Z. M. Fairuz, S. F. Sufian, M. Z. Abdullah, M. Zubair and M. S. Abdul Aziz, “Effect of piezoelectric fan mode shape on the heat transfer characteristics,” International Communications in Heat and Mass Transfer, vol. 52, 2014, pp. 140-151.
[14] H. Y. Li and S. M. Chao, “Measurement of performance of plate-fin heat sinks with cross flow cooling,” International Journal of Heat and Mass Transfer, vol. 52, no. 13-14, 2009, pp. 2949-2955.
[15] H. Y. Li, S. M. Chao, J. W. Chen and J. T. Yang, “Thermal performance of plate-fin heat sinks with piezoelectric cooling fan,” International Journal of Heat and Mass Transfer, vol. 57, 2013, pp. 722-732.
[16] K. H. Tseng, M. Mochizuki, K. Mashiko, T. Kosakabe, E. Takenaka, K. Yamamoto and R. Kikutake, “Piezo Fan for Thermal Management of Electronics,” Fujikura Technical Review, no. 39, 2010.
[17] D. K. Kim, J. K. Bae and S. J. Kim, “Comparison of thermal performances of plate-fin and pin-fin heat sinks subject to an impinging flow,” IEEE Thermal and Thermomechanical Phenomena in Electronic Systems, Orlando, 2008, pp. 360-366.
[18] K. M. Ng, I. Sauciuc, H. Wada and N. Tanaka, “Cooling Performance of Piezoelectric Fan in Notebook System,” 34th International Electronics Manufacturing Technology Conference, Melaka, 2010.
[19] J. Petroski, M. Arik and M. Gursoy, “Optimization of Piezoelectric Oscillating Fan-Cooled Heat Sinks for Electronics Cooling,” IEEE Transactions on Components and Packaging Technologies, vol. 33, no. 1, 2010, pp. 25-31.
[20] C. B. Coetzer and J. A. Visser, “Compact Modeling of Forced Flow in Longitudinal Fin Heat Sinks With Tip Bypass,” Journal of Electronic Packaging, vol. 125, 2003, pp. 319-324.
[21] H. Jonsson and B. Palm, “Thermal and Hydraulic Behavior of Plate Fin and Strip Fin Heat Sinks Under Varying Bypass Conditions,” IEEE Transactions on Components and Packaging Technologies, vol. 23, no. 1, 2000, pp. 47-54.
[22] R. Schacht, A. Hausdorf, B. Wunderle and B. Michel, “Frictionless Air Flow Blade Fan for Thermal Management of Electronics,” 13th IEEE Thermal and Thermomechanical Phenomena in Electronic Systems, San Diego, 2012, pp. 1320-1326.
[23] R. Singh, M. Mochizuki, M. A. Shahed, Y. Saito, A. Jalilvand, M. Matsuda, Y. Kawahara and K. Goto, “Low Profile Cooling Solutions for Advanced Packaging Based on Ultra-Thin Heat Pipe and Piezo Fan,” 3rd IEEE CPMT Symposium Japan, Kyoto, 2013.
[24] H. K. Ma, H. C. Su, C. L. Liu and W. H. Ho, “Investigation of a piezoelectric fan embedded in a heat sink,” International Communications in Heat and Mass Transfer, vol. 39, 2012, pp. 603-609.
[25] H. K. Ma, H. C. Su and W. F. Luo, “Investigation of a piezoelectric fan cooling system with multiple magnetic fans,” Sensors and Actuators A: Physical, vol. 189, 2013, pp. 356-363.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊