跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.167) 您好!臺灣時間:2025/10/31 13:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:羅子鈞
研究生(外文):Tzu-Chun Lo
論文名稱:關聯性分析中識別微型核醣核酸與信息核醣核酸交互作用之統計架構
論文名稱(外文):A Statistical Framework for Identifying miRNA-mRNA Interactions in Association Studies
指導教授:黃耀廷
指導教授(外文):Yao-Ting Huang
口試委員:陳健尉陳璿宇
口試委員(外文):Jeremy J.W. ChenHsuan-Yu Chen
口試日期:2015-01-23
學位類別:碩士
校院名稱:國立中正大學
系所名稱:資訊工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:49
中文關鍵詞:微型核糖核酸信息核醣核酸交互作用
外文關鍵詞:miRNA-mRNA interactionmiRNA target prediction
相關次數:
  • 被引用被引用:0
  • 點閱點閱:194
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
微型核糖核酸(microRNA; miRNA)是一種非編碼之核糖核酸,透過切斷目標信息
核醣核酸(Messenger RNA; mRNA),來達到抑制基因表現量之功能。由於高通量
之小型核醣核酸測序(Small RNA-Seq)和核糖核酸測序(RNA-Seq)之平台,讓我們
可以更了解miRNA 和mRNA 在全基因體內之分布與表現量多寡。實際上,被
miRNA 切斷之mRNA 於被降解前仍會存在細胞內一段時間。這些被切斷之殘存
序列,仍可能被現有定序平台偵測到,造成在切位附近的mRNA 表現量有所異
常。本篇論文發展出一套統計方法,能結合RNA-seq 與切位資訊,偵測出因
miRNA 切斷所造成之異常mRNA 表現,更準確地偵測出miRNA-mRNA 交互作
用。我們的方法應用在二種水稻品種之耐寒研究。我們從分析不同水稻品種之
small RNA-seq 與RNA-seq,鑑定出23 miRNA-mRNA 交互作用,可能與耐寒成
因有高度相關性。
MicroRNAs (miRNAs) are noncoding small RNAs which suppress target mRNA expres-
sion by cleavage. Thanks to the development of small RNA sequencing (small RNA-Seq)
and RNA sequencing (RNA-Seq), we can gain insight into the landscape and expres-
sion abundance of miRNAs and mRNAs in the genome. In reality, the miRNA-cleaved
transcripts remain in the cell before degradation. These cleaved transcripts may be still
captured and sequenced, leading to aberrant expression around the cleavage site. In
this thesis, we design and implement a statistical framework for identifying aberrant
expression caused by miRNA cleavage from RNA-seq. Our method is applied on a cold-
stress study of two rice strains. We identi ed 23 miRNA-mRNA interactions with such
aberrant expression, which are highly correlated to tolerance of cold stress.
Abstract i
Acknowledgements ii
List of Figures v
List of Tables vii
1 Introduction 1
2 Literature Review 3
2.1 RNA Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Small RNA sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Cleavage site . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.4 Chi-square test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.4.1 Goodness of Fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.5 T-test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.5.1 Paired T-test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.5.2 Two-sample T-test . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.5.2.1 Equal sample sizes, equal variance . . . . . . . . . . . . . 5
2.5.2.2 Unequal sample sizes, equal variance . . . . . . . . . . . . 6
2.5.2.3 Equal or Unequal sample sizesm unequal variances . . . . 6
3 Material and Method 7
3.1 Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Mapping of RNA-seq Reads . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3 Preprocess and Prediction of miRNAs from small RNA-seq . . . . . . . . 8
3.4 miRNA Target Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.5 Normalization of miRNA and Transcript Expression . . . . . . . . . . . . 9
3.6 Filtration of low expression transcripts and sampling for rescale . . . . . . 11
3.6.1 Filtration of low expression transcripts . . . . . . . . . . . . . . . . 11
3.6.2 Sampling for rescale . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.7 Detecting di erential expression with coverage bias . . . . . . . . . . . . . 12
3.7.1 The coverage bias of sequencing result . . . . . . . . . . . . . . . . 12
3.7.2 Detecting di erential expression at 5' end . . . . . . . . . . . . . . 13
3.8 Correction of cleavage-induced coverage bias . . . . . . . . . . . . . . . . . 14
3.8.1 5' end expression greater than 3' end . . . . . . . . . . . . . . . . . 15
3.8.2 Low expression at 5' end . . . . . . . . . . . . . . . . . . . . . . . . 16
4 Results and Discussion 18
4.1 miRNA-RNA Interactions Identi ed from miRNA-seq and RNA-seq . . . 18
4.2 miRNA-RNA Interactions found with known miRNAs . . . . . . . . . . . 18
4.3 Candidates comparison between known and prediction of miRNAs . . . . 19
4.4 Correlation between miRNA cleavage and rice
owering . . . . . . . . . . 21
5 Discussion, Conclusion and Future Work 22
5.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
A The Candidates of Result from Predicted miRNAs 24
B The Candidates of Result from Known miRNAs 32
Bibliography 39
[1] Tingting Du and Phillip D. Zamore. microPrimer: the biogenesis and function of
microRNA. Development, 132:4645{4652, 2005.
[2] Victor Ambros James C. Carrington1. Role of MicroRNAs in Plant and Animal
Development. Science, 301(5631):336{338, 2003.
[3] P. Landgraf, M. Rusu, R. Sheridan, A. Sewer, N. Iovino, A. Aravin, S. Pfe er,
A. Rice, A. O. Kamphorst, M. Landthaler, C. Lin, N. D. Socci, L. Hermida,
V. Fulci, S. Chiaretti, R. Foa, J. Schliwka, U. Fuchs, A. Novosel, R. U. Muller,
B. Schermer, U. Bissels, J. Inman, Q. Phan, M. Chien, D. B. Weir, R. Choksi,
G. De Vita, D. Frezzetti, H. I. Trompeter, V. Hornung, G. Teng, G. Hartmann,
M. Palkovits, R. Di Lauro, P. Wernet, G. Macino, C. E. Rogler, J. W. Nagle, J. Ju,
F. N. Papavasiliou, T. Benzing, P. Lichter, W. Tam, M. J. Brownstein, A. Bosio,
A. Borkhardt, J. J. Russo, C. Sander, M. Zavolan, and T. Tuschl. A mammalian
microRNA expression atlas based on small RNA library sequencing. Cell, 129(7):
1401{1414, Jun 2007.
[4] M. R. Friedlander, W. Chen, C. Adamidi, J. Maaskola, R. Einspanier, S. Kne-
spel, and N. Rajewsky. Discovering microRNAs from deep sequencing data using
miRDeep. Nat. Biotechnol., 26(4):407{415, Apr 2008.
[5] Gang Xu Huabin Hou LingLin Zhou Xiaokun Li Zhongsheng Sun Erle Zhu,
Fangqing Zhao and Jinyu Wu. mirTools: microRNA pro ling and discovery based
on high-throughput sequencing. oxford journal, 38(suppl 2):W392{W397, 2010.
[6] Chang WC Lin KY Huang HD Lin NS Wang WC, Lin FM. miRExpress: ana-
lyzing high-throughput sequencing data for pro ling microRNA expression. BMC
Bioinformatics, 10:328, 2009.
[7] N. Cloonan, S.Wani, Q. Xu, J. Gu, K. Lea, S. Heater, C. Barbacioru, A. L. Steptoe,
H. C. Martin, E. Nourbakhsh, K. Krishnan, B. Gardiner, X. Wang, K. Nones,
J. A. Steen, N. A. Matigian, D. L. Wood, K. S. Kassahn, N. Waddell, J. Shepherd,
C. Lee, J. Ichikawa, K. McKernan, K. Bramlett, S. Kuersten, and S. M. Grimmond.
MicroRNAs and their isomiRs function cooperatively to target common biological
pathways. Genome Biol., 12(12):R126, 2011.
[8] Tarique N. Hasan Naveed Ahmed Syed Amal A. Al-Hazzani Mohammed A. Alsaif
Abdulaziz A. Alsaif Ali A. Alshatwi mail, Gowhar Sha . Di erential Expression
Pro le and Genetic Variants of MicroRNAs Sequences in Breast Cancer Patients.
PLoS ONE, 7(2):e30049, 2012.
[9] Y. Zhao, Z. Xu, Q. Mo, C. Zou, W. Li, Y. Xu, and C. Xie. Combined small RNA
and degradome sequencing reveals novel miRNAs and their targets in response to
low nitrate availability in maize. Ann. Bot., 112(3):633{642, Aug 2013.
[10] Nordio F Bollati V Fossati S Frascati F Tinaglia V Bertazzi PA Battaglia C Bac-
carelli AA. Motta V, Angelici L. Integrative Analysis of miRNA and in
ammatory
gene expression after acute particulate matter exposure. Oxford Journals, 132(2):
307{16, 2013.
[11] Rodak C Jantscher Y Wirth S Zavolan M Hausser J, Berninger P. MirZ: an inte-
grated microRNA expression atlas and target prediction resource. Nucleic Acids
Res, 37:W266{72, 2009.
[12] Xinbin Dai and Patrick Xuechun Zhao*. psRNATarget: a plant small RNA target
analysis server. Oxford Journals, 39(suppl 2):W155{W159, 2011.
[13] M. W. Rhoades, B. J. Reinhart, L. P. Lim, C. B. Burge, B. Bartel, and D. P. Bartel.
Prediction of plant microRNA targets. Cell, 110(4):513{520, Aug 2002.
[14] K. C. Miranda, T. Huynh, Y. Tay, Y. S. Ang, W. L. Tam, A. M. Thomson, B. Lim,
and I. Rigoutsos. A pattern-based method for the identi cation of MicroRNA
binding sites and their corresponding heteroduplexes. Cell, 126(6):1203{1217, Sep
2006.
[15] Russell RB Cohen SM Brennecke J, Stark A. Principles of MicroRNATarget Recog-
nition. PLoS Biol, 3(3):e85, 2005.
[16] Hugh C. Woolfenden Matthew B. Stocks Gyorgy Szittya Tamas Dalmay
Leighton Folkes, Simon Moxon and Vincent Moulton. PAREsnip: a tool for rapid
genome-wide discovery of small RNA/target interactions evidenced through de-
gradome sequencing. Nucleic Acids Research, 40(13):e103, 2012.
[17] M. A. Valencia-Sanchez, J. Liu, G. J. Hannon, and R. Parker. Control of translation
and mRNA degradation by miRNAs and siRNAs. Genes Dev., 20(5):515{524, Mar
2006.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top