跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.14) 您好!臺灣時間:2025/11/29 12:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃士恩
研究生(外文):Shih-En Huang
論文名稱:實現高線性度靜態效能之優化指定編碼十二位元數位類比轉換器
論文名稱(外文):A optimizied specified encoding 12-bit Digital-to-Analog Converter to achieve high linearity static performance
指導教授:郭可驥
指導教授(外文):Ko-Chi Kuo
學位類別:碩士
校院名稱:國立中山大學
系所名稱:資訊工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:50
中文關鍵詞:低面積高精準度指定編碼高線性度低電壓電流導引數位類比轉換器
外文關鍵詞:digital analog converterlow arealow voltagehigh linearityhigh precisionspecified
相關次數:
  • 被引用被引用:0
  • 點閱點閱:100
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出了一種全新的編碼(SMM編碼),有別於二進制編碼重新調整了權種,讓編碼更加靈活以此來減少二進制碼切換次數過多的問題。
本篇論文應用於實現了12位元 1Gs/s電流導引式數位類比轉換器(DAC),使用六位元溫度計碼與六位元SMM編碼的分段式的架構,為了兼顧效能與面積,比較需要穩定的六個有效位元(MSB)轉換成溫度計編碼,為了節省面積較小六個有效位元(LSB)使用一種有別於其他編碼方式的新型編碼,有別於一般常見的8+4架構這種分段方式可以大幅節省晶片面積與功耗。利用一組更為靈活的編碼方式改善二進制碼切換次數過多的突波問題,也因為此種分段的方式可以顧及到溫度計碼良好的靜態效能的優點達到良好的線性度,以及新型編碼的良好靜態效能、低面積、低功耗的優點,會選擇6+6的分段方式而不選擇一般常見的8+4架構是因為,利用了新型編碼改善了二進制加權碼突波的問題,所以可以將溫度計碼的分割比例做調整,以此改善面積過大的問題,另一方面也可以減少不少功耗。
設計上採用TSMC 90nm製程製作。此數位類比轉換器的取樣速率和解析度分別為1Gs/s和12位元。功率為23mW。模擬結果顯示,所提出的編碼技術,可以提高整體線性度及動態效能。
This paper proposes a new type of coding (SMM coding), which is different from the binary code to re-adjust the weights, making the coding more flexible and thus reducing the problem of too many binary code switching times.
This paper is applied to realize a 12-bit 1Gs/s current-guided digital analog converter (DAC), which uses a six-bit thermometer code and a six-bit SMM coded segmented architecture, in order to balance performance and area. Compare the six effective bits (MSB) that need to be stabilized into a thermometer code. In order to save the area, the six effective bits (LSB) use a new type of code that is different from other coding methods, which is different from the common 8+4 architecture this segmentation method can save a lot of chip area and power consumption. A more flexible coding method is used to improve the glitch problem of too many binary code switching times, and this segmentation method can take into account the good static performance of the thermometer code to achieve good linearity and good new coding. The advantages of static performance, low area, and low power consumption will choose 6+6 segmentation instead of the common 8+4 architecture because the use of new coding improves the problem of binary weighted code glitch, so it can Adjust the division ratio of the thermometer code to improve the problem of excessive area, and on the other hand, it can reduce a lot of power consumption.
The design is made using TSMC 90nm process. The sampling rate and resolution of this digital analog converter are 1 Gs/s and 12 bits, respectively. The power is 23mW. The simulation results show that the proposed coding technique can improve the overall linearity and dynamic performance.
論文審定書 ................................ ................................ ................................ ........... ….. i
論文公開授權書 ……………………………………………………………………… ii
中文摘要 …………………………………………………………………………….iii …………………………………………………………………………….iii
Abstract AbstractAbstract……………………………………………………………………………….iv ……………………………………………………………………………….iv
目錄 ………………………………………………………………………………… .. vi
圖目錄 ……………………………………………………………………………….vi ii
表目錄 ……………………………………………………………………………….. .ix
Chapter 1Chapter 1 Chapter 1 Chapter 1 緒論 ................................ ................................ ................................ ........ 1
1.1 動機 ................................ ................................ ................................ ........ 1
1.2 論文組織 ................................ ................................ ................................ 2
Chapter 2Chapter 2 Chapter 2 Chapter 2 數位類比轉換器介紹 ................................ ................................ ............ 3
2.1 數位類比轉換器簡介 ................................ ................................ ............ 3
2.2 主動元件式數位類比轉換器 ................................ ................................ 3
2.2.1 電阻式數位類比轉換器 ................................ ................................ 4
2.2.2 切換電容式數位類比轉器 ................................ ........................ 5
2.2.3 2.2.3 二進制加權式數位類比轉換器 ................................ ........................ 6
2.2.4 溫度計碼數位類比轉換器 ................................ ................................ .. 7
2.2.5 2.2.5 2.2.5 分段式架構數位類 比轉換器 ................................ .......................... 9
2.3 數位類比轉換器設計考量 ................................ ................................ .. 12
Chapter 3Chapter 3 Chapter 3 Chapter 3 數位類比轉換器之實現 ................................ ................................ ...... 13
3.1 6+6 6+6數位類比轉 換器 ................................ ................................ .......... 13
3.2 單位電流元 ................................ ................................ .......................... 15
3.3 開關最小化單調 SwitchingSwitching -Minimized Monotonic (SMM) Minimized Monotonic (SMM) Minimized Monotonic (SMM)Minimized Monotonic (SMM)Minimized Monotonic (SMM) Minimized Monotonic (SMM) Minimized Monotonic (SMM)Minimized Monotonic (SMM) ............. 19
3.4 6轉 8編碼器 ................................ ................................ ....................... 25
3.5 偏壓電路 ................................ ................................ .............................. 26
3.6 電路內部操作 ................................ ................................ ...................... 27
3.7 電流源權重 ................................ ................................ .......................... 28
3.8 晶片佈局 (Layout)(Layout)(Layout)(Layout)(Layout) ................................ ................................ ................ 30
vii
Chapter 4Chapter 4 Chapter 4 Chapter 4 模擬結果 ................................ ................................ .............................. 31
4.1 6轉 8編碼器模擬結果 ................................ ................................ ....... 31
4.2 6 +6 +數位類比器模擬結果 ................................ ................................ . 32
Chapter 5Chapter 5 Chapter 5 Chapter 5 結論與未來展 望 ................................ ................................ .................. 36
5.1 未來展望 ................................ ................................ .............................. 36
5.2 結論 ................................ ................................ ................................ ...... 37
參考文獻 38
[1]J. Bastos, A. M. Marques, M. S. Steyaert, and W. Sansen, "A 12-bit intrinsic accuracy high-speed CMOS DAC," IEEE Journal of Solid-State Circuits, vol. 33, no. 12, pp. 1959-1969, 1998.
[2]G. A. Van der Plas, J. Vandenbussche, W. Sansen, M. S. Steyaert, and G. G. Gielen, "A 14-bit intrinsic accuracy Q/sup 2/random walk CMOS DAC," IEEE Journal of Solid-State Circuits, vol. 34, no. 12, pp. 1708-1718, 1999.
[3]J. Deveugele and M. S. Steyaert, "A 10-bit 250-MS/s binary-weighted current-steering DAC," IEEE Journal of Solid-State Circuits, vol. 41, no. 2, pp. 320-329, 2006.
[4]T. Chen and G. G. Gielen, "A 14-bit 200-MHz current-steering DAC with switching-sequence post-adjustment calibration," IEEE Journal of Solid-State Circuits, vol. 42, no. 11, pp. 2386-2394, 2007.
[5]W.-T. Lin and T.-H. Kuo, "A compact dynamic-performance-improved current-steering DAC with random rotation-based binary-weighted selection," IEEE Journal of Solid-State Circuits, vol. 47, no. 2, pp. 444-453, 2011.
[6]W.-H. Tseng, C.-W. Fan, and J.-T. Wu, "A 12-Bit 1.25-GS/s DAC in 90 nm CMOS With $> $70 dB SFDR up to 500 MHz," IEEE Journal of Solid-State Circuits, vol. 46, no. 12, pp. 2845-2856, 2011.
[7]Y. Tang et al., "A 14 bit 200 MS/s DAC with SFDR> 78 dBc, IM3<-83 dBc and NSD<-163 dBm/Hz across the whole nyquist band enabled by dynamic-mismatch mapping," IEEE Journal of Solid-State Circuits, vol. 46, no. 6, pp. 1371-1381, 2011.
[8]C.-H. Lin and K. Bult, "A 10-b, 500-MSample/s CMOS DAC in 0.6 mm/sup 2," IEEE Journal of Solid-State Circuits, vol. 33, no. 12, pp. 1948-1958, 1998.
[9]R. J. Baker, CMOS: circuit design, layout, and simulation. Wiley-IEEE press, 2019.
[10] G. Radulov, P. J. Quinn, P. C. van Beek, J. A. Hegt, and A. H. van Roermund, "A binary-to-thermometer decoder with built-in redundancy for improved DAC yield," in 2006 IEEE International Symposium on Circuits and Systems, 2006: IEEE, p. 4 pp.
[11] G. Radulov, P. Quinn, P. van Beek, J. Hegt, and A. van Roermund, "A binary-to-thermometer decoder with redundant switching sequences," in 2006 Annual Workshop on Circuits, Systems and Signal Processing (ProRISC 2006), 2006: Technology Foundation, pp. 1414-1417.
[12]M.-H. Shen, J.-H. Tsai, and P.-C. Huang, "Random swapping dynamic element matching technique for glitch energy minimization in current-steering DAC," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 57, no. 5, pp. 369-373, 2010.
[13]D. A. Mercer, "Low-Power Approaches to High-Speed Current-Steering Digital-to-Analog Converters in 0.18-$mu $ m CMOS," IEEE Journal of Solid-State Circuits, vol. 42, no. 8, pp. 1688-1698, 2007.
[14] F.-J. Luo, Y.-S. Yin, S.-Q. Liang, and M.-L. Gao, "Current switch driver and current source designs for high-speed current-steering DAC," in 2008 2nd International Conference on Anti-counterfeiting, Security and Identification, 2008: IEEE, pp. 364-367.
[15]K. N. Leung and P. K. Mok, "A CMOS voltage reference based on weighted/SPL Delta/V/Sub GS/for CMOS low-dropout linear regulators," IEEE Journal of Solid-State Circuits, vol. 38, no. 1, pp. 146-150, 2003.
[16]Y. L. S. Y. L. Lian and Z. Zengyu, "CMOS bandgap voltage reference with 1.8-V power supply," 2003.
[17] S. Sarkar and S. Banerjee, "A 10-bit 500 MSPS Segmented DAC with Optimized Current Sources to Avoid Mismatch Effect," in 2015 IEEE Computer Society Annual Symposium on VLSI, 2015: IEEE, pp. 172-177.
[18] B. Li, L. Zhao, J. Wu, and Y. Cheng, "A 12GS/s 6-bit DAC with 4–2 Segmentation in 40nm CMOS," in 2018 IEEE International Symposium on Circuits and Systems (ISCAS), 2018: IEEE, pp. 1-5.
[19]W.-T. Lin, H.-Y. Huang, and T.-H. Kuo, "A 12-bit 40 nm DAC Achieving SFDR> 70 dB at 1.6 GS/s and IMD<–61dB at 2.8 GS/s With DEMDRZ Technique," IEEE Journal of Solid-State Circuits, vol. 49, no. 3, pp. 708-717, 2014.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top