跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.136) 您好!臺灣時間:2025/09/20 14:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:安奎道
研究生(外文):Talal Al-Qaisi
論文名稱:研究活化誘導脫氨酶體突變的最佳方法和Globo H抗體原位類型轉換
論文名稱(外文):Optimization of AID somatic hypermutations system and in situ class switching of Globo H antibodies
指導教授:羅傅倫
指導教授(外文):Steve R. Roffler
學位類別:博士
校院名稱:國立陽明大學
系所名稱:生化暨分子生物研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:英文
論文頁數:110
中文關鍵詞:誘導脫氨酶體類型轉換Globo H
外文關鍵詞:AIDsomatic hypermutationsaffinity maturationclass switch recombinationGlobo H
相關次數:
  • 被引用被引用:0
  • 點閱點閱:139
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
Monoclonal antibodies have become a mainstream treatment option in oncology. Most therapeutic targets have been limited to surface receptors overexpressed on cancer cells. Globo H (GH) is a newly appreciated glycolipid for cancer targeting, which is overexpressed on several cancer types including breast, colon, lung, ovarian, gastric, pancreatic and prostate cancers as well as on breast cancer stem cells. GH was discovered more than 30 years ago, but only two specific antibodies have been reported; MBr1 and VK9.No antibodies against GH have yet been approved for cancer treatment. A general obstacle in the glycobiology field is the difficulty in generating high affinity and specific anti-carbohydrate antibodies. Here, we propose an in situ affinity maturation platform using ectopic expression of activation-induced cytidine deaminase (AID) to increase the affinity of MBr1 antibody; the most famous and well-studied antibody against Globo H.

Affinity maturation requires repeated cycles of mutagenesis, selection and amplification. To generate a general platform for affinity maturation of antibodies, we optimized in situ somatic hypermutagenesis in HEK293FT cells. We found that transgenes integrated into HEK293FT could efficiently accumulate somatic hypermutations (SHM) after repeated transient expression of a hyperactive AID mutant (AID m7.3). Stable expression of AID m7.3 can accumulate SHM in transgenes, but induce genotoxicity and suppress cells replication.

Initially, we planned to do affinity maturation directly in hybridoma; we infected MBr1 hybridoma cells with mouse AID and repeated several cycles of sorting. We were able to isolate cells with improved binding to GH probes, but unfortunately, we could not prove that those cells produce antibodies with higher affinity because they did not have any mutation in VL and VH genes. We proposed that improved binding to GH probes is probably attributed to surface molecules other than antibodies.

Since hybridoma in situ affinity maturation is hindered by difficulty of introducing AID and nonspecific binding to GH probes, we alternatively decided to use HEK293FT to increase the affinity of GH antibodies. We first generated stable cell lines expressing surface GH antibodies in HEK293FT cells (293FT/MBr1). Diversity can be generated by repeated cycles of AID m7.3 expression. Antibodies with improved binding can be isolated by high throughput fluorescence-activated cell sorting (FACS). Specificity of improved antibodies can be maintained by sorting out cells that bind to closely related carbohydrate structures like Gb5, type 1 and type 2 H antigens; this assures that only cells that maintain binding to GH specifically will be collected. This approach may offer a general method to improve the affinity and utility of a wide range of anti-glycan antibodies.

AID can also induce class switch recombination (CSR). IgM antibodies cannot diffuse to tissues and are not easy to handle and purify. Using ectopic expression of AID directly in MBr1 and other hybridomas, we succeeded to switch hybridomas from IgM to IgG. IgG hybridomas produce IgG antibodies, which can be easily purified and used for applications occasionally not applicable with IgM antibodies.
CONTENTS i
ABSTRACT iii
ABBREVIATIONS v
ACKNOWLEDGEMENTS vii
INTRODUCTION 1
I. Background 2
1. Monoclonal antibodies and hybridoma technology 2
2. Antibodies against carbohydrate antigens 3
3. Antibodies for cancer targeting 4
4. Antibody affinity for therapeutic applications 6
5. Affinity versus avidity 7
6. The affinity of monoclonal antibodies against carbohydrate structures 7
7. Platforms for antibody affinity maturation 8
8. B cell maturation and the germinal center reaction 13
9. Somatic hypermutation 16
10. Class switch recombination 17
11. Activation-induced cytidine deaminase 18
12. Affinity maturation of T cell-dependent antigens 20
13. Limited in vivo evolution of carbohydrate antibodies 20
II. Globo H antibody as a target for affinity maturation 24
III. Strategy and goals 29
MATERIALS & METHODS 33
Cell lines and culture conditions 34
Generation of reporter cells 34
AID gene amplification 36
AID mutant construction 36
Stable expression of AID 37
Transient expression of AID 38
Immunoblotting 38
Flow cytometry 39
Cell proliferation assay 39
Sequencing 40
Analysis of surface Ig in hybridoma cells 40
Screening and sorting conditions 41
Antibody ELISA 41
Binding kinetics analysis of selected antibodies by surface plasmon resonance 42
Quantitative PCR 43
RESULTS 44
I. In situ CSR and SHM by ectopic expression of AID in MBr1 hybridoma 45
1. Goals 45
2. Results 45
3. Conclusion 47
II. Characterization of MBr1 IgG antibody 52
1. Goals 52
2. Results 52
3. Conclusion 53
III. Optimization of AID expression in 293FT cells using AID upmutant enzyme 56
1. Goals 56
2. Results 56
3. Conclusions 61
IV. Optimizing AID expression in MBr1 hybridoma 68
1. Goals 68
2. Results 68
3. Conclusions 69
V. Expression of MBr1 in 293FT cells 72
1. Goals 72
2. Results 72
3. Conclusions 73
DISCUSSION 77
VI. Appendix A: Characterization of hybridoma affinity maturation clones 84
VII. Appendix B: Immunization of mice with GH-conjugated proteins 89
REFERENCES 95
1. Bournazos, S.; Ravetch, J. V., Fcgamma receptor pathways during active and passive immunization. Immunol Rev 2015, 268 (1), 88-103.
2. Beers, S. A.; Glennie, M. J.; White, A. L., Influence of immunoglobulin isotype on therapeutic antibody function. Blood 2016, 127 (9), 1097-101.
3. Stapleton, N. M.; Einarsdottir, H. K.; Stemerding, A. M.; Vidarsson, G., The multiple facets of FcRn in immunity. Immunol Rev 2015, 268 (1), 253-68.
4. Reichert, J. M., Antibodies to watch in 2016. MAbs 2016, 8 (2), 197-204.
5. Kohler, G.; Milstein, C., Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 1975, 256 (5517), 495-7.
6. Omidfar, K.; Daneshpour, M., Advances in phage display technology for drug discovery. Expert Opin Drug Discov 2015, 10 (6), 651-69.
7. McCafferty, J.; Schofield, D., Identification of optimal protein binders through the use of large genetically encoded display libraries. Curr Opin Chem Biol 2015, 26, 16-24.
8. Bruggemann, M.; Osborn, M. J.; Ma, B.; Hayre, J.; Avis, S.; Lundstrom, B.; Buelow, R., Human antibody production in transgenic animals. Arch Immunol Ther Exp (Warsz) 2015, 63 (2), 101-8.
9. Sterner, E.; Flanagan, N.; Gildersleeve, J. C., Perspectives on Anti-Glycan Antibodies Gleaned from Development of a Community Resource Database. Acs Chemical Biology 2016, 11 (7), 1773-1783.
10. Sterner, E.; Flanagan, N.; Gildersleeve, J. C., Perspectives on Anti-Glycan Antibodies Gleaned from Development of a Community Resource Database. ACS Chem Biol 2016, 11 (7), 1773-83.
11. Adobati, E.; Panza, L.; Russo, G.; Colnaghi, M. I.; Canevari, S., In vitro mimicry of CaMBr1 tumor-associated antigen by synthetic oligosaccharides. Glycobiology 1997, 7 (2), 173-178.
12. Cheung, N. K.; Cheung, I. Y.; Kramer, K.; Modak, S.; Kuk, D.; Pandit-Taskar, N.; Chamberlain, E.; Ostrovnaya, I.; Kushner, B. H., Key role for myeloid cells: phase II results of anti-G(D2) antibody 3F8 plus granulocyte-macrophage colony-stimulating factor for chemoresistant osteomedullary neuroblastoma. Int J Cancer 2014, 135 (9), 2199-205.
13. Cheung, N. K.; Kushner, B. H.; Yeh, S. D.; Larson, S. M., 3F8 monoclonal antibody treatment of patients with stage 4 neuroblastoma: a phase II study. Int J Oncol 1998, 12 (6), 1299-306.
14. Houghton, A. N.; Mintzer, D.; Cordon-Cardo, C.; Welt, S.; Fliegel, B.; Vadhan, S.; Carswell, E.; Melamed, M. R.; Oettgen, H. F.; Old, L. J., Mouse monoclonal IgG3 antibody detecting GD3 ganglioside: a phase I trial in patients with malignant melanoma. Proc Natl Acad Sci U S A 1985, 82 (4), 1242-6.
15. Scott, A. M.; Lee, F. T.; Hopkins, W.; Cebon, J. S.; Wheatley, J. M.; Liu, Z.; Smyth, F. E.; Murone, C.; Sturrock, S.; MacGregor, D.; Hanai, N.; Inoue, K.; Yamasaki, M.; Brechbiel, M. W.; Davis, I. D.; Murphy, R.; Hannah, A.; Lim-Joon, M.; Chan, T.; Chong, G.; Ritter, G.; Hoffman, E. W.; Burgess, A. W.; Old, L. J., Specific targeting, biodistribution, and lack of immunogenicity of chimeric anti-GD3 monoclonal antibody KM871 in patients with metastatic melanoma: results of a phase I trial. J Clin Oncol 2001, 19 (19), 3976-87.
16. Brezicka, F. T.; Olling, S.; Nilsson, O.; Bergh, J.; Holmgren, J.; Sorenson, S.; Yngvason, F.; Lindholm, L., Immunohistological detection of fucosyl-GM1 ganglioside in human lung cancer and normal tissues with monoclonal antibodies. Cancer Res 1989, 49 (5), 1300-5.
17. Scott, A. M.; Tebbutt, N.; Lee, F. T.; Cavicchiolo, T.; Liu, Z.; Gill, S.; Poon, A. M.; Hopkins, W.; Smyth, F. E.; Murone, C.; MacGregor, D.; Papenfuss, A. T.; Chappell, B.; Saunder, T. H.; Brechbiel, M. W.; Davis, I. D.; Murphy, R.; Chong, G.; Hoffman, E. W.; Old, L. J., A phase I biodistribution and pharmacokinetic trial of humanized monoclonal antibody Hu3s193 in patients with advanced epithelial cancers that express the Lewis-Y antigen. Clinical cancer research : an official journal of the American Association for Cancer Research 2007, 13 (11), 3286-92.
18. Livingston, P. O.; Hood, C.; Krug, L. M.; Warren, N.; Kris, M. G.; Brezicka, T.; Ragupathi, G., Selection of GM2, fucosyl GM1, globo H and polysialic acid as targets on small cell lung cancers for antibody mediated immunotherapy. Cancer Immunol Immunother 2005, 54 (10), 1018-25.
19. Cascinelli, N.; Doci, R.; Belli, F.; Nava, M.; Marolda, R.; Costa, A.; Menard, S.; Terno, G., Evaluation of Toxic Effects Following Administration of Monoclonal-Antibody Mbr1 in Patients with Breast-Cancer. Tumori 1986, 72 (3), 267-271.
20. Wei, M. M.; Wang, Y. S.; Ye, X. S., Carbohydrate-based vaccines for oncotherapy. Med Res Rev 2018, 38 (3), 1003-1026.
21. Hess, V.; Glimelius, B.; Grawe, P.; Dietrich, D.; Bodoky, G.; Ruhstaller, T.; Bajetta, E.; Saletti, P.; Figer, A.; Scheithauer, W.; Herrmann, R., CA 19-9 tumour-marker response to chemotherapy in patients with advanced pancreatic cancer enrolled in a randomised controlled trial. Lancet Oncol 2008, 9 (2), 132-8.
22. Boeck, S.; Haas, M.; Laubender, R. P.; Kullmann, F.; Klose, C.; Bruns, C. J.; Wilkowski, R.; Stieber, P.; Holdenrieder, S.; Buchner, H.; Mansmann, U.; Heinemann, V., Application of a time-varying covariate model to the analysis of CA 19-9 as serum biomarker in patients with advanced pancreatic cancer. Clinical cancer research : an official journal of the American Association for Cancer Research 2010, 16 (3), 986-94.
23. In Transforming Glycoscience: A Roadmap for the Future, Washington (DC), 2012.
24. Coombe, D. R.; Davis, C.; Fincher, G.; McConville, M. J.; Packer, N.; Stubbs, K. A.; Williams, S. J.; Dell, A., Letter to the glycoforum transforming glycoscience: an Australian perspective. Glycobiology 2014, 24 (1), 1-3.
25. Scott, A. M.; Wolchok, J. D.; Old, L. J., Antibody therapy of cancer. Nature Reviews Cancer 2012, 12 (4), 278-287.
26. Green, M. C.; Murray, J. L.; Hortobagyi, G. N., Monoclonal antibody therapy for solid tumors. Cancer Treat Rev 2000, 26 (4), 269-286.
27. Schrama, D.; Reisfeld, R. A.; Becker, J. C., Antibody targeted drugs as cancer therapeutics. Nature Reviews Drug Discovery 2006, 5 (2), 147-159.
28. Lambert, J. M., Drug-conjugated antibodies for the treatment of cancer. Brit J Clin Pharmaco 2013, 76 (2), 248-262.
29. Reichert, J. M., Monoclonal antibodies in the clinic - Despite initial teething problems, the number of clinically effective monoclonal antibodies is growing. Nature biotechnology 2001, 19 (9), 819-822.
30. Clynes, R. A.; Towers, T. L.; Presta, L. G.; Ravetch, J. V., Inhibitory Fc receptors modulate in vivo cytotoxicity against tumor targets. Nature medicine 2000, 6 (4), 443-6.
31. Cartron, G.; Dacheux, L.; Salles, G.; Solal-Celigny, P.; Bardos, P.; Colombat, P.; Watier, H., Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcgammaRIIIa gene. Blood 2002, 99 (3), 754-8.
32. Zhang, W.; Gordon, M.; Schultheis, A.; Yang, D.; Nagashima, F.; Azuma, M.; Chang, H.; Borucka, E.; Lurje, G.; Sherrod, A., FCGR2A and FCGR3A polymorphisms associated with clinical outcome of epidermal growth factor receptor expressing metastatic colorectal cancer patients treated with single-agent cetuximab. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 2007, 25 (24), 3712 - 3718.
33. Musolino, A.; Naldi, N.; Bortesi, B.; Pezzuolo, D.; Capelletti, M.; Missale, G.; Laccabue, D.; Zerbini, A.; Camisa, R.; Bisagni, G.; Neri, T. M.; Ardizzoni, A., Immunoglobulin G fragment C receptor polymorphisms and clinical efficacy of trastuzumab-based therapy in patients with HER-2/neu-positive metastatic breast cancer. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 2008, 26 (11), 1789-96.
34. Bibeau, F.; Lopez-Crapez, E.; Di Fiore, F.; Thezenas, S.; Ychou, M.; Blanchard, F.; Lamy, A.; Penault-Llorca, F.; Frebourg, T.; Michel, P.; Sabourin, J. C.; Boissiere-Michot, F., Impact of Fc{gamma}RIIa-Fc{gamma}RIIIa polymorphisms and KRAS mutations on the clinical outcome of patients with metastatic colorectal cancer treated with cetuximab plus irinotecan. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 2009, 27 (7), 1122-9.
35. Horton, H. M.; Bernett, M. J.; Pong, E.; Peipp, M.; Karki, S.; Chu, S. Y.; Richards, J. O.; Vostiar, I.; Joyce, P. F.; Repp, R.; Desjarlais, J. R.; Zhukovsky, E. A., Potent in vitro and in vivo activity of an Fc-engineered anti-CD19 monoclonal antibody against lymphoma and leukemia. Cancer research 2008, 68 (19), 8049-57.
36. Woyach, J. A.; Awan, F.; Flinn, I. W.; Berdeja, J. G.; Wiley, E.; Mansoor, S.; Huang, Y.; Lozanski, G.; Foster, P. A.; Byrd, J. C., A phase 1 trial of the Fc-engineered CD19 antibody XmAb5574 (MOR00208) demonstrates safety and preliminary efficacy in relapsed CLL. Blood 2014, 124 (24), 3553-60.
37. Dunkelberger, J. R.; Song, W. C., Complement and its role in innate and adaptive immune responses. Cell research 2010, 20 (1), 34-50.
38. Di Gaetano, N.; Cittera, E.; Nota, R.; Vecchi, A.; Grieco, V.; Scanziani, E.; Botto, M.; Introna, M.; Golay, J., Complement activation determines the therapeutic activity of rituximab in vivo. J Immunol 2003, 171 (3), 1581-7.
39. Cragg, M. S.; Glennie, M. J., Antibody specificity controls in vivo effector mechanisms of anti-CD20 reagents. Blood 2004, 103 (7), 2738-43.
40. Racila, E.; Link, B. K.; Weng, W. K.; Witzig, T. E.; Ansell, S.; Maurer, M. J.; Huang, J.; Dahle, C.; Halwani, A.; Levy, R.; Weiner, G. J., A polymorphism in the complement component C1qA correlates with prolonged response following rituximab therapy of follicular lymphoma. Clinical cancer research : an official journal of the American Association for Cancer Research 2008, 14 (20), 6697-703.
41. Zuckier, L. S.; Berkowitz, E. Z.; Sattenberg, R. J.; Zhao, Q. H.; Deng, H. F.; Scharff, M. D., Influence of affinity and antigen density on antibody localization in a modifiable tumor targeting model. Cancer research 2000, 60 (24), 7008-7013.
42. Velders, M.; Van Rhijn, C.; Oskam, E.; Fleuren, G.; Warnaar, S.; Litvinov, S., The impact of antigen density and antibody affinity on antibody-dependent cellular cytotoxicity: relevance for immunotherapy of carcinomas. British journal of cancer 1998, 78 (4), 478.
43. Tang, Y.; Lou, J.; Alpaugh, R. K.; Robinson, M. K.; Marks, J. D.; Weiner, L. M., Regulation of antibody-dependent cellular cytotoxicity by IgG intrinsic and apparent affinity for target antigen. The Journal of Immunology 2007, 179 (5), 2815-2823.
44. Lundquist, J. J.; Toone, E. J., The cluster glycoside effect. Chemical reviews 2002, 102 (2), 555-578.
45. MacKenzie, C. R.; Hirama, T.; Deng, S.-j.; Bundle, D. R.; Narang, S. A.; Young, N. M., Analysis by surface plasmon resonance of the influence of valence on the ligand binding affinity and kinetics of an anti-carbohydrate antibody. Journal of Biological Chemistry 1996, 271 (3), 1527-1533.
46. Wabl, M.; Steinberg, C., Affinity maturation and class switching. Current Opinion in Immunology 1996, 8 (1), 89-92.
47. Rispens, T.; Ooijevaar-de Heer, P.; Derksen, N. I. L.; Wolbink, G.; van Schouwenburg, P. A.; Kruithof, S.; Aalberse, R. C., Nanomolar to sub-picomolar affinity measurements of antibody-antigen interactions and protein multimerizations: Fluorescence-assisted high-performance liquid chromatography. Anal Biochem 2013, 437 (2), 118-122.
48. Polonskaya, Z.; Deng, S. L.; Sarkar, A.; Kain, L.; Comellas-Aragones, M.; McKay, C. S.; Kaczanowska, K.; Holt, M.; McBride, R.; Palomo, V.; Self, K. M.; Taylor, S.; Irimia, A.; Mehta, S. R.; Dan, J. M.; Brigger, M.; Crotty, S.; Schoenberger, S. P.; Paulson, J. C.; Wilson, I. A.; Savage, P. B.; Finn, M. G.; Teyton, L., T cells control the generation of nanomolar-affinity anti-glycan antibodies. J Clin Invest 2017, 127 (4), 1491-1504.
49. Oberli, M. A.; Tamborrini, M.; Tsai, Y.-H.; Werz, D. B.; Horlacher, T.; Adibekian, A.; Gauss, D.; Möller, H. M.; Pluschke, G.; Seeberger, P. H., Molecular analysis of carbohydrate− antibody interactions: Case study using a Bacillus anthracis tetrasaccharide. Journal of the American Chemical Society 2010, 132 (30), 10239-10241.
50. Schoonbroodt, S.; Steukers, M.; Viswanathan, M.; Frans, N.; Timmermans, M.; Wehnert, A.; Nguyen, M.; Ladner, R. C.; Hoet, R. M., Engineering antibody heavy chain CDR3 to create a phage display Fab library rich in antibodies that bind charged carbohydrates. The Journal of Immunology 2008, 181 (9), 6213-6221.
51. Yuasa, N.; Koyama, T.; Subedi, G. P.; Yamaguchi, Y.; Matsushita, M.; Fujita-Yamaguchi, Y., Expression and structural characterization of anti-T-antigen single-chain antibodies (scFvs) and analysis of their binding to T-antigen by surface plasmon resonance and NMR spectroscopy. Journal of biochemistry 2013, mvt089.
52. Daugherty, A. L.; Mrsny, R. J., Formulation and delivery issues for monoclonal antibody therapeutics. Adv. Drug Deliv. Rev. 2006, 58 (5), 686-706.
53. Lowe, D.; Dudgeon, K.; Rouet, R.; Schofield, P.; Jermutus, L.; Christ, D., Aggregation, stability, and formulation of human antibody therapeutics. Adv. Protein Chem. Struct. Biol. 2011, 84, 41-61.
54. Smith, G. P., Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 1985, 228 (4705), 1315-7.
55. Sanchez-Martin, D.; Sorensen, M. D.; Lykkemark, S.; Sanz, L.; Kristensen, P.; Ruoslahti, E.; Alvarez-Vallina, L., Selection strategies for anticancer antibody discovery: searching off the beaten path. Trends in biotechnology 2015, 33 (5), 292-301.
56. Skerra, A.; Pluckthun, A., Assembly of a functional immunoglobulin Fv fragment in Escherichia coli. Science 1988, 240 (4855), 1038-41.
57. Better, M.; Chang, C. P.; Robinson, R. R.; Horwitz, A. H., Escherichia coli secretion of an active chimeric antibody fragment. Science 1988, 240 (4855), 1041-3.
58. Nelson, A. L.; Dhimolea, E.; Reichert, J. M., Development trends for human monoclonal antibody therapeutics. Nature reviews. Drug discovery 2010, 9 (10), 767-774.
59. Decker, D. J.; Boyle, N. E.; Koziol, J. A.; Klinman, N. R., The expression of the Ig H chain repertoire in developing bone marrow B lineage cells. J Immunol 1991, 146 (1), 350-61.
60. Leung. D.W., C., E. and Goeddel, D.V., A method for random mutagenesis of a defined DNA segment using a modified polymerase chain reaction. J. mETH. cELL. mOL. bIOL 1989, 1, 5.
61. Fowler, R. G.; Schaaper, R. M.; Glickman, B. W., Characterization of mutational specificity within the lacI gene for a mutD5 mutator strain of Escherichia coli defective in 3'----5' exonuclease (proofreading) activity. Journal of bacteriology 1986, 167 (1), 130-7.
62. Boder, E. T.; Wittrup, K. D., Yeast surface display for directed evolution of protein expression, affinity, and stability. Methods in enzymology 2000, 328, 430-44.
63. Benatuil, L.; Perez, J. M.; Belk, J.; Hsieh, C. M., An improved yeast transformation method for the generation of very large human antibody libraries. Protein engineering, design & selection : PEDS 2010, 23 (4), 155-9.
64. Hawkins, R. E.; Russell, S. J.; Winter, G., Selection of phage antibodies by binding affinity. Mimicking affinity maturation. Journal of molecular biology 1992, 226 (3), 889-96.
65. Kieke, M. C.; Cho, B. K.; Boder, E. T.; Kranz, D. M.; Wittrup, K. D., Isolation of anti-T cell receptor scFv mutants by yeast surface display. Protein engineering 1997, 10 (11), 1303-10.
66. Ward, A. C., Single-step purification of shuttle vectors from yeast for high frequency back-transformation into E. coli. Nucleic acids research 1990, 18 (17), 5319.
67. Zhou, C.; Jacobsen, F. W.; Cai, L.; Chen, Q.; Shen, W. D., Development of a novel mammalian cell surface antibody display platform. mAbs 2010, 2 (5), 508-18.
68. Kwakkenbos, M. J.; Diehl, S. A.; Yasuda, E.; Bakker, A. Q.; van Geelen, C. M.; Lukens, M. V.; van Bleek, G. M.; Widjojoatmodjo, M. N.; Bogers, W. M.; Mei, H.; Radbruch, A.; Scheeren, F. A.; Spits, H.; Beaumont, T., Generation of stable monoclonal antibody-producing B cell receptor-positive human memory B cells by genetic programming. Nature medicine 2010, 16 (1), 123-8.
69. Lanzavecchia, A.; Corti, D.; Sallusto, F., Human monoclonal antibodies by immortalization of memory B cells. Current opinion in biotechnology 2007, 18 (6), 523-8.
70. Beerli, R. R.; Bauer, M.; Buser, R. B.; Gwerder, M.; Muntwiler, S.; Maurer, P.; Saudan, P.; Bachmann, M. F., Isolation of human monoclonal antibodies by mammalian cell display. Proceedings of the National Academy of Sciences of the United States of America 2008, 105 (38), 14336-41.
71. Martin, A.; Scharff, M. D., Somatic hypermutation of the AID transgene in B and non-B cells. Proceedings of the National Academy of Sciences of the United States of America 2002, 99 (19), 12304-8.
72. Yoshikawa, K.; Okazaki, I. M.; Eto, T.; Kinoshita, K.; Muramatsu, M.; Nagaoka, H.; Honjo, T., AID enzyme-induced hypermutation in an actively transcribed gene in fibroblasts. Science 2002, 296 (5575), 2033-6.
73. Harris, R. S.; Sale, J. E.; Petersen-Mahrt, S. K.; Neuberger, M. S., AID is essential for immunoglobulin V gene conversion in a cultured B cell line. Current biology : CB 2002, 12 (5), 435-8.
74. Bowers, P. M.; Horlick, R. A.; Neben, T. Y.; Toobian, R. M.; Tomlinson, G. L.; Dalton, J. L.; Jones, H. A.; Chen, A.; Altobell, L., 3rd; Zhang, X.; Macomber, J. L.; Krapf, I. P.; Wu, B. F.; McConnell, A.; Chau, B.; Holland, T.; Berkebile, A. D.; Neben, S. S.; Boyle, W. J.; King, D. J., Coupling mammalian cell surface display with somatic hypermutation for the discovery and maturation of human antibodies. Proceedings of the National Academy of Sciences of the United States of America 2011, 108 (51), 20455-60.
75. Lipovsek, D.; Plückthun, A., In-vitro protein evolution by ribosome display and mRNA display. Journal of immunological methods 2004, 290 (1–2), 51-67.
76. Ribosome Display and Related Technologies. 1 ed.; Douthwaite, J. A., Jackson, Ronald H., Ed. Humana Press: 2012; p. 424.
77. Kanamori, T.; Fujino, Y.; Ueda, T., PURE ribosome display and its application in antibody technology. Biochimica et biophysica acta 2014, 1844 (11), 1925-1932.
78. Schatz, D. G.; Swanson, P. C., V(D)J recombination: mechanisms of initiation. Annu Rev Genet 2011, 45, 167-202.
79. Allen, C. D.; Okada, T.; Cyster, J. G., Germinal-center organization and cellular dynamics. Immunity 2007, 27 (2), 190-202.
80. MacLennan, I. C., Germinal centers. Annual review of immunology 1994, 12, 117-39.
81. Nieuwenhuis, P.; Opstelten, D., Functional anatomy of germinal centers. The American journal of anatomy 1984, 170 (3), 421-35.
82. Jacob, J.; Kassir, R.; Kelsoe, G., In situ studies of the primary immune response to (4-hydroxy-3-nitrophenyl)acetyl. I. The architecture and dynamics of responding cell populations. The Journal of experimental medicine 1991, 173 (5), 1165-75.
83. Hauser, A. E.; Junt, T.; Mempel, T. R.; Sneddon, M. W.; Kleinstein, S. H.; Henrickson, S. E.; von Andrian, U. H.; Shlomchik, M. J.; Haberman, A. M., Definition of germinal-center B cell migration in vivo reveals predominant intrazonal circulation patterns. Immunity 2007, 26 (5), 655-67.
84. Cattoretti, G.; Chang, C. C.; Cechova, K.; Zhang, J.; Ye, B. H.; Falini, B.; Louie, D. C.; Offit, K.; Chaganti, R. S.; Dalla-Favera, R., BCL-6 protein is expressed in germinal-center B cells. Blood 1995, 86 (1), 45-53.
85. Onizuka, T.; Moriyama, M.; Yamochi, T.; Kuroda, T.; Kazama, A.; Kanazawa, N.; Sato, K.; Kato, T.; Ota, H.; Mori, S., BCL-6 gene product, a 92- to 98-kD nuclear phosphoprotein, is highly expressed in germinal center B cells and their neoplastic counterparts. Blood 1995, 86 (1), 28-37.
86. Pereira, J. P.; Kelly, L. M.; Xu, Y.; Cyster, J. G., EBI2 mediates B cell segregation between the outer and centre follicle. Nature 2009, 460 (7259), 1122-6.
87. Gatto, C.; Milanick, M., Red blood cell Na pump: Insights from species differences. Blood cells, molecules & diseases 2009, 42 (3), 192-200.
88. Allen, C. D.; Ansel, K. M.; Low, C.; Lesley, R.; Tamamura, H.; Fujii, N.; Cyster, J. G., Germinal center dark and light zone organization is mediated by CXCR4 and CXCR5. Nature immunology 2004, 5 (9), 943-52.
89. Hauser, A. E.; Shlomchik, M. J.; Haberman, A. M., In vivo imaging studies shed light on germinal-centre development. Nature reviews. Immunology 2007, 7 (7), 499-504.
90. Allen, C. D.; Okada, T.; Tang, H. L.; Cyster, J. G., Imaging of germinal center selection events during affinity maturation. Science 2007, 315 (5811), 528-31.
91. Liu, Y. J.; Zhang, J.; Lane, P. J.; Chan, E. Y.; MacLennan, I. C., Sites of specific B cell activation in primary and secondary responses to T cell-dependent and T cell-independent antigens. European journal of immunology 1991, 21 (12), 2951-62.
92. Zhang, J.; MacLennan, I. C.; Liu, Y. J.; Lane, P. J., Is rapid proliferation in B centroblasts linked to somatic mutation in memory B cell clones? Immunology letters 1988, 18 (4), 297-9.
93. Mandel, T. E.; Phipps, R. P.; Abbot, A. P.; Tew, J. G., Long-term antigen retention by dendritic cells in the popliteal lymph node of immunized mice. Immunology 1981, 43 (2), 353-62.
94. Kelsoe, G., The germinal center: a crucible for lymphocyte selection. Seminars in immunology 1996, 8 (3), 179-84.
95. Victora, G. D.; Nussenzweig, M. C., Germinal centers. Annual review of immunology 2012, 30, 429-57.
96. McHeyzer-Williams, L. J.; McHeyzer-Williams, M. G., Antigen-specific memory B cell development. Annual review of immunology 2005, 23, 487-513.
97. Lanzavecchia, A., Antigen-specific interaction between T and B cells. Nature 1985, 314 (6011), 537-9.
98. Parker, D. C., T cell-dependent B cell activation. Annual review of immunology 1993, 11, 331-60.
99. Crotty, S., Follicular helper CD4 T cells (TFH). Annual review of immunology 2011, 29, 621-63.
100. Tew, J. G.; Phipps, R. P.; Mandel, T. E., The maintenance and regulation of the humoral immune response: persisting antigen and the role of follicular antigen-binding dendritic cells as accessory cells. Immunological reviews 1980, 53, 175-201.
101. Mandel, T. E.; Phipps, R. P.; Abbot, A.; Tew, J. G., The follicular dendritic cell: long term antigen retention during immunity. Immunological reviews 1980, 53, 29-59.
102. Jacob, J.; Kelsoe, G.; Rajewsky, K.; Weiss, U., Intraclonal generation of antibody mutants in germinal centres. Nature 1991, 354 (6352), 389-92.
103. Kim, H. J.; Verbinnen, B.; Tang, X.; Lu, L.; Cantor, H., Inhibition of follicular T-helper cells by CD8(+) regulatory T cells is essential for self tolerance. Nature 2010, 467 (7313), 328-32.
104. Pulendran, B.; Smith, K. G.; Nossal, G. J., Soluble antigen can impede affinity maturation and the germinal center reaction but enhance extrafollicular immunoglobulin production. J Immunol 1995, 155 (3), 1141-50.
105. Shokat, K. M.; Goodnow, C. C., Antigen-induced B-cell death and elimination during germinal-centre immune responses. Nature 1995, 375 (6529), 334-8.
106. Liu, M.; Duke, J. L.; Richter, D. J.; Vinuesa, C. G.; Goodnow, C. C.; Kleinstein, S. H.; Schatz, D. G., Two levels of protection for the B cell genome during somatic hypermutation. Nature 2008, 451 (7180), 841-845.
107. Odegard, V. H.; Schatz, D. G., Targeting of somatic hypermutation. Nature reviews. Immunology 2006, 6 (8), 573-83.
108. Di Noia, J. M.; Neuberger, M. S., Molecular mechanisms of antibody somatic hypermutation. Annual review of biochemistry 2007, 76, 1-22.
109. Liu, M.; Schatz, D. G., Balancing AID and DNA repair during somatic hypermutation. Trends in immunology 2009, 30 (4), 173-81.
110. Petersen-Mahrt, S. K.; Harris, R. S.; Neuberger, M. S., AID mutates E. coli suggesting a DNA deamination mechanism for antibody diversification. Nature 2002, 418 (6893), 99-103.
111. Rada, C.; Williams, G. T.; Nilsen, H.; Barnes, D. E.; Lindahl, T.; Neuberger, M. S., Immunoglobulin Isotype Switching Is Inhibited and Somatic Hypermutation Perturbed in UNG-Deficient Mice. Current Biology 2002, 12 (20), 1748-1755.
112. Zeng, X.; Winter, D. B.; Kasmer, C.; Kraemer, K. H.; Lehmann, A. R.; Gearhart, P. J., DNA polymerase eta is an A-T mutator in somatic hypermutation of immunoglobulin variable genes. Nature immunology 2001, 2 (6), 537-41.
113. Stavnezer, J.; Guikema, J. E.; Schrader, C. E., Mechanism and regulation of class switch recombination. Annual review of immunology 2008, 26, 261-92.
114. Daniel, J. A.; Nussenzweig, A., The AID-induced DNA damage response in chromatin. Molecular cell 2013, 50 (3), 309-21.
115. Muramatsu, M.; Nagaoka, H.; Shinkura, R.; Begum, N. A.; Honjo, T., Discovery of activation-induced cytidine deaminase, the engraver of antibody memory. Advances in immunology 2007, 94, 1-36.
116. Revy, P.; Muto, T.; Levy, Y.; Geissmann, F.; Plebani, A.; Sanal, O.; Catalan, N.; Forveille, M.; Dufourcq-Labelouse, R.; Gennery, A.; Tezcan, I.; Ersoy, F.; Kayserili, H.; Ugazio, A. G.; Brousse, N.; Muramatsu, M.; Notarangelo, L. D.; Kinoshita, K.; Honjo, T.; Fischer, A.; Durandy, A., Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the Hyper-IgM syndrome (HIGM2). Cell 2000, 102 (5), 565-75.
117. Muramatsu, M.; Kinoshita, K.; Fagarasan, S.; Yamada, S.; Shinkai, Y.; Honjo, T., Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 2000, 102 (5), 553-63.
118. Sabouri, S.; Kobayashi, M.; Begum, N. A.; Xu, J.; Hirota, K.; Honjo, T., C-terminal region of activation-induced cytidine deaminase (AID) is required for efficient class switch recombination and gene conversion. Proceedings of the National Academy of Sciences of the United States of America 2014, 111 (6), 2253-8.
119. Hasler, J.; Rada, C.; Neuberger, M. S., Cytoplasmic activation-induced cytidine deaminase (AID) exists in stoichiometric complex with translation elongation factor 1alpha (eEF1A). Proceedings of the National Academy of Sciences of the United States of America 2011, 108 (45), 18366-71.
120. Patenaude, A. M.; Orthwein, A.; Hu, Y.; Campo, V. A.; Kavli, B.; Buschiazzo, A.; Di Noia, J. M., Active nuclear import and cytoplasmic retention of activation-induced deaminase. Nature structural & molecular biology 2009, 16 (5), 517-27.
121. Maeda, K.; Singh, S. K.; Eda, K.; Kitabatake, M.; Pham, P.; Goodman, M. F.; Sakaguchi, N., GANP-mediated recruitment of activation-induced cytidine deaminase to cell nuclei and to immunoglobulin variable region DNA. The Journal of biological chemistry 2010, 285 (31), 23945-53.
122. Basso, K.; Schneider, C.; Shen, Q.; Holmes, A. B.; Setty, M.; Leslie, C.; Dalla-Favera, R., BCL6 positively regulates AID and germinal center gene expression via repression of miR-155. The Journal of experimental medicine 2012, 209 (13), 2455-65.
123. de Yebenes, V. G.; Belver, L.; Pisano, D. G.; Gonzalez, S.; Villasante, A.; Croce, C.; He, L.; Ramiro, A. R., miR-181b negatively regulates activation-induced cytidine deaminase in B cells. The Journal of experimental medicine 2008, 205 (10), 2199-206.
124. Aoufouchi, S.; Faili, A.; Zober, C.; D'Orlando, O.; Weller, S.; Weill, J. C.; Reynaud, C. A., Proteasomal degradation restricts the nuclear lifespan of AID. The Journal of experimental medicine 2008, 205 (6), 1357-68.
125. Pham, P.; Bransteitter, R.; Petruska, J.; Goodman, M. F., Processive AID-catalysed cytosine deamination on single-stranded DNA simulates somatic hypermutation. Nature 2003, 424 (6944), 103-107.
126. Xu, Z.; Fulop, Z.; Wu, G.; Pone, E. J.; Zhang, J.; Mai, T.; Thomas, L. M.; Al-Qahtani, A.; White, C. A.; Park, S.-R.; Steinacker, P.; Li, Z.; Yates, J.; Herron, B.; Otto, M.; Zan, H.; Fu, H.; Casali, P., 14-3-3 adaptor proteins recruit AID to 5[prime]-AGCT-3[prime]-rich switch regions for class switch recombination. Nature structural & molecular biology 2010, 17 (99), 1124-1135.
127. Zarrin, A. A.; Alt, F. W.; Chaudhuri, J.; Stokes, N.; Kaushal, D.; Du Pasquier, L.; Tian, M., An evolutionarily conserved target motif for immunoglobulin class-switch recombination. Nature immunology 2004, 5 (12), 1275-1281.
128. Hasham, M. G.; Snow, K. J.; Donghia, N. M.; Branca, J. A.; Lessard, M. D.; Stavnezer, J.; Shopland, L. S.; Mills, K. D., Activation-induced cytidine deaminase-initiated off-target DNA breaks are detected and resolved during S phase. J Immunol 2012, 189 (5), 2374-82.
129. Liu, M.; Duke, J. L.; Richter, D. J.; Vinuesa, C. G.; Goodnow, C. C.; Kleinstein, S. H.; Schatz, D. G., Two levels of protection for the B cell genome during somatic hypermutation. Nature 2008, 451 (7180), 841-5.
130. Cortellino, S.; Xu, J.; Sannai, M.; Moore, R.; Caretti, E.; Cigliano, A.; Le Coz, M.; Devarajan, K.; Wessels, A.; Soprano, D.; Abramowitz, L. K.; Bartolomei, M. S.; Rambow, F.; Bassi, M. R.; Bruno, T.; Fanciulli, M.; Renner, C.; Klein-Szanto, A. J.; Matsumoto, Y.; Kobi, D.; Davidson, I.; Alberti, C.; Larue, L.; Bellacosa, A., Thymine DNA glycosylase is essential for active DNA demethylation by linked deamination-base excision repair. Cell 2011, 146 (1), 67-79.
131. Matsumoto, Y.; Marusawa, H.; Kinoshita, K.; Endo, Y.; Kou, T.; Morisawa, T.; Azuma, T.; Okazaki, I. M.; Honjo, T.; Chiba, T., Helicobacter pylori infection triggers aberrant expression of activation-induced cytidine deaminase in gastric epithelium. Nature medicine 2007, 13 (4), 470-6.
132. Huemer, M.; Rebhandl, S.; Zaborsky, N.; Gassner, F. J.; Hainzl, S.; Weiss, L.; Hebenstreit, D.; Greil, R.; Geisberger, R., AID induces intraclonal diversity and genomic damage in CD86(+) chronic lymphocytic leukemia cells. European journal of immunology 2014, 44 (12), 3747-57.
133. Victora, G. D.; Schwickert, T. A.; Fooksman, D. R.; Kamphorst, A. O.; Meyer-Hermann, M.; Dustin, M. L.; Nussenzweig, M. C., Germinal Center Dynamics Revealed by Multiphoton Microscopy with a Photoactivatable Fluorescent Reporter. Cell 2010, 143 (4), 592-605.
134. Crotty, S., Follicular Helper CD4 T Cells (T-FH). Annual Review of Immunology, Vol 29 2011, 29, 621-663.
135. Reinhardt, R. L.; Liang, H. E.; Locksley, R. M., Cytokine-secreting follicular T cells shape the antibody repertoire. Nature immunology 2009, 10 (4), 385-393.
136. Dedeoglu, F.; Horwitz, B.; Chaudhuri, J.; Alt, F. W.; Geha, R. S., Induction of activation-induced cytidine deaminase gene expression by IL-4 and CD40 ligation is dependent on STAT6 and NF kappa B. Int Immunol 2004, 16 (3), 395-404.
137. Mond, J. J.; Lees, A.; Snapper, C. M., T-Cell-Independent Antigens Type-2. Annual review of immunology 1995, 13, 655-692.
138. Eller, C. H.; Yang, G.; Ouerfelli, O.; Raines, R. T., Affinity of monoclonal antibodies for Globo-series glycans. Carbohydrate Research 2014, 397 (0), 1-6.
139. Wang, C.-C.; Huang, Y.-L.; Ren, C.-T.; Lin, C.-W.; Hung, J.-T.; Yu, J.-C.; Alice, L. Y.; Wu, C.-Y.; Wong, C.-H., Glycan microarray of Globo H and related structures for quantitative analysis of breast cancer. Proceedings of the National Academy of Sciences 2008, 105 (33), 11661-11666.
140. Scott, A. M.; Geleick, D.; Rubira, M.; Clarke, K.; Nice, E. C.; Smyth, F. E.; Stockert, E.; Richards, E. C.; Carr, F. J.; Harris, W. J.; Armour, K. L.; Rood, J.; Kypridis, A.; Kronina, V.; Murphy, R.; Lee, F.-T.; Liu, Z.; Kitamura, K.; Ritter, G.; Laughton, K.; Hoffman, E.; Burgess, A. W.; Old, L. J., Construction, production, and characterization of humanized anti-Lewis Y monoclonal antibody 3S193 for targeted immunotherapy of solid tumors. Cancer research 2000, 60 (12), 3254-3261.
141. Altman, E.; Harrison, B. A.; Hirama, T.; Chandan, V.; To, R.; MacKenzie, R., Characterization of murine monoclonal antibodies against Helicobacter pylori lipopolysaccharide specific for Lex and Ley blood group determinants. Biochemistry and cell biology 2005, 83 (5), 589-596.
142. Brooks, C. L.; Schietinger, A.; Borisova, S. N.; Kufer, P.; Okon, M.; Hirama, T.; MacKenzie, C. R.; Wang, L.-X.; Schreiber, H.; Evans, S. V., Antibody recognition of a unique tumor-specific glycopeptide antigen. Proceedings of the National Academy of Sciences 2010, 107 (22), 10056-10061.
143. Harris, S. L.; Fernsten, P., Thermodynamics and density of binding of a panel of antibodies to high-molecular-weight capsular polysaccharides. Clinical and Vaccine Immunology 2009, 16 (1), 37-42.
144. Kato, Y.; Kuan, C.-T.; Chang, J.; Kaneko, M. K.; Ayriss, J.; Piao, H.; Chandramohan, V.; Pegram, C.; McLendon, R. E.; Fredman, P., GMab-1, a high-affinity anti-3′-isoLM1/3′, 6′-isoLD1 IgG monoclonal antibody, raised in lacto-series ganglioside-defective knockout mice. Biochemical and biophysical research communications 2010, 391 (1), 750-755.
145. Roche, M. I.; Lu, Z.; Hui, J. H.; Sharon, J., Characterization of monoclonal antibodies to terminal and internal O-antigen epitopes of Francisella tularensis lipopolysaccharide. Hybridoma 2011, 30 (1), 19-28.
146. Sawada, R.; Sun, S.-M.; Wu, X.; Hong, F.; Ragupathi, G.; Livingston, P. O.; Scholz, W. W., Human monoclonal antibodies to sialyl-Lewisa (CA19. 9) with potent CDC, ADCC, and antitumor activity. Clinical Cancer Research 2011, 17 (5), 1024-1032.
147. Oberli, M. A.; Tamborrini, M.; Tsai, Y.-H.; Werz, D. B.; Horlacher, T.; Adibekian, A.; Gauss, D.; Möller, H. M.; Pluschke, G.; Seeberger, P. H., Molecular Analysis of Carbohydrate−Antibody Interactions: Case Study Using a Bacillus anthracis Tetrasaccharide. Journal of the American Chemical Society 2010, 132 (30), 10239-10241.
148. Deng, S.; MacKenzie, C. R.; Sadowska, J.; Michniewicz, J.; Young, N. M.; Bundle, D. R.; Narang, S. A., Selection of antibody single-chain variable fragments with improved carbohydrate binding by phage display. Journal of Biological Chemistry 1994, 269 (13), 9533-9538.
149. Mao, S.; Gao, C.; Lo, C.-H. L.; Wirsching, P.; Wong, C.-H.; Janda, K. D., Phage-display library selection of high-affinity human single-chain antibodies to tumor-associated carbohydrate antigens sialyl Lewisx and Lewisx. Proceedings of the National Academy of Sciences 1999, 96 (12), 6953-6958.
150. Gerstenbruch, S.; Brooks, C. L.; Kosma, P.; Brade, L.; MacKenzie, C. R.; Evans, S. V.; Brade, H.; Müller-Loennies, S., Analysis of cross-reactive and specific anti-carbohydrate antibodies against lipopolysaccharide from Chlamydophila psittaci. Glycobiology 2010, 20 (4), 461-472.
151. Johansson, R.; Ohlin, M.; Jansson, B.; Ohlson, S., Transiently binding antibody fragments against Lewis x and sialyl-Lewis x. Journal of Immunological Methods 2006, 312 (1), 20-26.
152. Müller-Loennies, S.; Galliciotti, G.; Kollmann, K.; Glatzel, M.; Braulke, T., A novel single-chain antibody fragment for detection of mannose 6-phosphate-containing proteins: application in mucolipidosis type II patients and mice. The American journal of pathology 2010, 177 (1), 240-247.
153. Sakai, K.; Shimizu, Y.; Chiba, T.; Matsumoto-Takasaki, A.; Kusada, Y.; Zhang, W.; Nakata, M.; Kojima, N.; Toma, K.; Takayanagi, A., Isolation and characterization of phage-displayed single chain antibodies recognizing nonreducing terminal mannose residues. 1. A new strategy for generation of anti-carbohydrate antibodies. Biochemistry 2007, 46 (1), 253-262.
154. Wang, X.; Katayama, A.; Wang, Y.; Yu, L.; Favoino, E.; Sakakura, K.; Favole, A.; Tsuchikawa, T.; Silver, S.; Watkins, S. C., Functional characterization of an scFv-Fc antibody that immunotherapeutically targets the common cancer cell surface proteoglycan CSPG4. Cancer research 2011, 71 (24), 7410-7422.
155. Yuasa, N.; Koyama, T.; Fujita-Yamaguchi, Y., Purification and refolding of anti-T-antigen single chain antibodies (scFvs) expressed in Escherichia coli as inclusion bodies. Bioscience trends 2014, 8 (1), 24-31.
156. Zhang, W.; Matsumoto-Takasaki, A.; Kusada, Y.; Sakaue, H.; Sakai, K.; Nakata, M.; Fujita-Yamaguchi, Y., Isolation and characterization of phage-displayed single chain antibodies recognizing nonreducing terminal mannose residues. 2. Expression, purification, and characterization of recombinant single chain antibodies. Biochemistry 2007, 46 (1), 263-270.
157. Kannagi, R.; Levery, S. B.; Ishigami, F.; Hakomori, S.; Shevinsky, L. H.; Knowles, B. B.; Solter, D., New globoseries glycosphingolipids in human teratocarcinoma reactive with the monoclonal antibody directed to a developmentally regulated antigen, stage-specific embryonic antigen 3. The Journal of biological chemistry 1983, 258 (14), 8934-42.
158. Bremer, E. G.; Levery, S. B.; Sonnino, S.; Ghidoni, R.; Canevari, S.; Kannagi, R.; Hakomori, S., Characterization of a glycosphingolipid antigen defined by the monoclonal antibody MBr1 expressed in normal and neoplastic epithelial cells of human mammary gland. The Journal of biological chemistry 1984, 259 (23), 14773-7.
159. Mariani-Costantini, R.; Barbanti, P.; Colnaghi, M. I.; Menard, S.; Clemente, C.; Rilke, F., Reactivity of a monoclonal antibody with tissues and tumors from the human breast. Immunohistochemical localization of a new antigen and clinicopathologic correlations. The American journal of pathology 1984, 115 (1), 47-56.
160. Canevari, S.; Fossati, G.; Balsari, A.; Sonnino, S.; Colnaghi, M. I., Immunochemical analysis of the determinant recognized by a monoclonal antibody (MBr1) which specifically binds to human mammary epithelial cells. Cancer research 1983, 43 (3), 1301-5.
161. Zhang, S.; Zhang, H. S.; Cordon-Cardo, C.; Reuter, V. E.; Singhal, A. K.; Lloyd, K. O.; Livingston, P. O., Selection of tumor antigens as targets for immune attack using immunohistochemistry: II. Blood group-related antigens. International journal of cancer. Journal international du cancer 1997, 73 (1), 50-6.
162. Chang, W. W.; Lee, C. H.; Lee, P.; Lin, J.; Hsu, C. W.; Hung, J. T.; Lin, J. J.; Yu, J. C.; Shao, L. E.; Yu, J.; Wong, C. H.; Yu, A. L., Expression of Globo H and SSEA3 in breast cancer stem cells and the involvement of fucosyl transferases 1 and 2 in Globo H synthesis. Proceedings of the National Academy of Sciences of the United States of America 2008, 105 (33), 11667-72.
163. Zhu, J.; Wang, Y.; Yu, Y.; Wang, Z.; Zhu, T.; Xu, X.; Liu, H.; Hawke, D.; Zhou, D.; Li, Y., Aberrant fucosylation of glycosphingolipids in human hepatocellular carcinoma tissues. Liver International 2014, 34 (1), 147-160.
164. Cheng, J.-Y.; Wang, S.-H.; Lin, J.; Tsai, Y.-C.; Yu, J.; Wu, J.-C.; Hung, J.-T.; Lin, J.-J.; Wu, Y.-Y.; Yeh, K.-T., Globo-H Ceramide Shed from Cancer Cells Triggers Translin-Associated Factor X-Dependent Angiogenesis. Cancer research 2014.
165. Tsai, Y.-C.; Huang, J.-R.; Cheng, J.-Y.; Lin, J.-J.; Hung, J.-T.; Wu, Y.-Y.; Yeh, K.-T.; Yu, A. L., A prevalent cancer associated glycan, globo H ceramide, induces immunosuppression by reducing notch1 signaling. J Cancer Sci Ther 5: 264-270. doi 2013.
166. Gilewski, T.; Ragupathi, G.; Bhuta, S.; Williams, L. J.; Musselli, C.; Zhang, X. F.; Bornmann, W. G.; Spassova, M.; Bencsath, K. P.; Panageas, K. S.; Chin, J.; Hudis, C. A.; Norton, L.; Houghton, A. N.; Livingston, P. O.; Danishefsky, S. J., Immunization of metastatic breast cancer patients with a fully synthetic globo H conjugate: a phase I trial. Proceedings of the National Academy of Sciences of the United States of America 2001, 98 (6), 3270-5.
167. Slovin, S. F.; Ragupathi, G.; Fernandez, C.; Jefferson, M. P.; Diani, M.; Wilton, A. S.; Powell, S.; Spassova, M.; Reis, C.; Clausen, H.; Danishefsky, S.; Livingston, P.; Scher, H. I., A bivalent conjugate vaccine in the treatment of biochemically relapsed prostate cancer: a study of glycosylated MUC-2-KLH and Globo H-KLH conjugate vaccines given with the new semi-synthetic saponin immunological adjuvant GPI-0100 OR QS-21. Vaccine 2005, 23 (24), 3114-22.
168. Zhu, J.; Wan, Q.; Lee, D.; Yang, G.; Spassova, M. K.; Ouerfelli, O.; Ragupathi, G.; Damani, P.; Livingston, P. O.; Danishefsky, S. J., From synthesis to biologics: preclinical data on a chemistry derived anticancer vaccine. Journal of the American Chemical Society 2009, 131 (26), 9298-303.
169. Huang, Y.-L.; Hung, J.-T.; Cheung, S. K. C.; Lee, H.-Y.; Chu, K.-C.; Li, S.-T.; Lin, Y.-C.; Ren, C.-T.; Cheng, T.-J. R.; Hsu, T.-L.; Yu, A. L.; Wu, C.-Y.; Wong, C.-H., Carbohydrate-based vaccines with a glycolipid adjuvant for breast cancer. Proceedings of the National Academy of Sciences 2013, 110 (7), 2517-2522.
170. Danishefsky, S. J.; Shue, Y.-K.; Chang, M. N.; Wong, C.-H., Development of Globo-H Cancer Vaccine. Accounts of chemical research 2015, 48 (3), 643-652.
171. Jiang, X.-R.; Song, A.; Bergelson, S.; Arroll, T.; Parekh, B.; May, K.; Chung, S.; Strouse, R.; Mire-Sluis, A.; Schenerman, M., Advances in the assessment and control of the effector functions of therapeutic antibodies. Nature Reviews Drug Discovery 2011, 10 (2), 101-111.
172. Pillay, V.; Gan, H. K.; Scott, A. M., Antibodies in oncology. New biotechnology 2011, 28 (5), 518-529.
173. Slovin, S. F.; Ragupathi, G.; Adluri, S.; Ungers, G.; Terry, K.; Kim, S.; Spassova, M.; Bornmann, W. G.; Fazzari, M.; Dantis, L.; Olkiewicz, K.; Lloyd, K. O.; Livingston, P. O.; Danishefsky, S. J.; Scher, H. I., Carbohydrate vaccines in cancer: immunogenicity of a fully synthetic globo H hexasaccharide conjugate in man. Proc. Natl. Acad. Sci. U. S. A. 1999, 96 (10), 5710-5.
174. Kudryashov, V.; Ragupathi, G.; Kim, I. J.; Breimer, M. E.; Danishefsky, S. J.; Livingston, P. O.; Lloyd, K. O., Characterization of a mouse monoclonal IgG3 antibody to the tumor-associated globo H structure produced by immunization with a synthetic glycoconjugate. Glycoconjugate journal 1998, 15 (3), 243-249.
175. Peters, C.; Brown, S., Antibody-drug conjugates as novel anti-cancer chemotherapeutics. Bioscience Rep 2015, 35.
176. Ramsden, D. A.; van Gent, D. C.; Gellert, M., Specificity in V(D)J recombination: new lessons from biochemistry and genetics. Curr Opin Immunol 1997, 9 (1), 114-20.
177. Crouch, E. E.; Li, Z.; Takizawa, M.; Fichtner-Feigl, S.; Gourzi, P.; Montano, C.; Feigenbaum, L.; Wilson, P.; Janz, S.; Papavasiliou, F. N.; Casellas, R., Regulation of AID expression in the immune response. The Journal of experimental medicine 2007, 204 (5), 1145-56.
178. Jacob, J.; Przylepa, J.; Miller, C.; Kelsoe, G., In situ studies of the primary immune response to (4-hydroxy-3-nitrophenyl)acetyl. III. The kinetics of V region mutation and selection in germinal center B cells. The Journal of experimental medicine 1993, 178 (4), 1293-307.
179. Corti, D.; Voss, J.; Gamblin, S. J.; Codoni, G.; Macagno, A.; Jarrossay, D.; Vachieri, S. G.; Pinna, D.; Minola, A.; Vanzetta, F., A neutralizing antibody selected from plasma cells that binds to group 1 and group 2 influenza A hemagglutinins. Science 2011, 333 (6044), 850.
180. Ekiert, D. C.; Friesen, R. H. E.; Bhabha, G.; Kwaks, T.; Jongeneelen, M.; Yu, W.; Ophorst, C.; Cox, F.; Korse, H. J. W. M.; Brandenburg, B.; Vogels, R.; Brakenhoff, J. P. J.; Kompier, R.; Koldijk, M. H.; Cornelissen, L. A. H. M.; Poon, L. L. M.; Peiris, M.; Koudstaal, W.; Wilson, I. A.; Goudsmit, J., A highly conserved neutralizing epitope on group 2influenza A viruses. Science 2011, 333 (6044), 843-850.
181. Su, Y.-C.; Al-Qaisi, T. S.; Tung, H.-Y.; Cheng, T.-L.; Chuang, K.-H.; Chen, B.-M.; Roffler, S. R., Mimicking the germinal center reaction in hybridoma cells to isolate temperature-selective anti-PEG antibodies. MAbs 2014, 6 (4), 39-38.
182. Sawano, A.; Miyawaki, A., Directed evolution of green fluorescent protein by a new versatile PCR strategy for site-directed and semi-random mutagenesis. Nucleic acids research 2000, 28 (16), E78.
183. Wang, M.; Yang, Z.; Rada, C.; Neuberger, M. S., AID upmutants isolated using a high-throughput screen highlight the immunity/cancer balance limiting DNA deaminase activity. Nature structural & molecular biology 2009, 16 (7), 769-76.
184. Basu, U.; Franklin, A.; Schwer, B.; Cheng, H. L.; Chaudhuri, J.; Alt, F. W., Regulation of activation-induced cytidine deaminase DNA deamination activity in B-cells by Ser38 phosphorylation. Biochemical Society transactions 2009, 37 (Pt 3), 561-8.
185. Okazaki, I. M.; Okawa, K.; Kobayashi, M.; Yoshikawa, K.; Kawamoto, S.; Nagaoka, H.; Shinkura, R.; Kitawaki, Y.; Taniguchi, H.; Natsume, T.; Iemura, S.; Honjo, T., Histone chaperone Spt6 is required for class switch recombination but not somatic hypermutation. Proc Natl Acad Sci U S A 2011, 108 (19), 7920-5.
186. Tong, P.; Granato, A.; Zuo, T.; Chaudhary, N.; Zuiani, A.; Han, S. S.; Donthula, R.; Shrestha, A.; Sen, D.; Magee, J. M.; Gallagher, M. P.; van der Poel, C. E.; Carroll, M. C.; Wesemann, D. R., IgH isotype-specific B cell receptor expression influences B cell fate. Proceedings of the National Academy of Sciences of the United States of America 2017, 114 (40), E8411-E8420.
187. Karlsson, R., Affinity analysis of non-steady-state data obtained under mass transport limited conditions using BIAcore technology. Journal of Molecular Recognition 1999, 12 (5), 285-292.
188. Wang, L.; Jackson, W. C.; Steinbach, P. A.; Tsien, R. Y., Evolution of new nonantibody proteins via iterative somatic hypermutation. Proc Natl Acad Sci U S A 2004, 101 (48), 16745-9.
189. Wang, X.; Fan, M.; Kalis, S.; Wei, L.; Scharff, M. D., A source of the single-stranded DNA substrate for activation-induced deaminase during somatic hypermutation. Nat Commun 2014, 5, 4137.
190. Bachl, J.; Carlson, C.; Gray-Schopfer, V.; Dessing, M.; Olsson, C., Increased transcription levels induce higher mutation rates in a hypermutating cell line. J Immunol 2001, 166 (8), 5051-7.
191. Martin, A.; Scharff, M. D., Somatic hypermutation of the AID transgene in B and non-B cells. Proceedings of the National Academy of Sciences of the United States of America 2002, 99 (19), 12304-12308.
192. Cheng, H. L.; Vuong, B. Q.; Basu, U.; Franklin, A.; Schwer, B.; Astarita, J.; Phan, R. T.; Datta, A.; Manis, J.; Alt, F. W.; Chaudhuri, J., Integrity of the AID serine-38 phosphorylation site is critical for class switch recombination and somatic hypermutation in mice. Proc Natl Acad Sci U S A 2009, 106 (8), 2717-22.
193. Mahon, M. J., Vectors bicistronically linking a gene of interest to the SV40 large T antigen in combination with the SV40 origin of replication enhance transient protein expression and luciferase reporter activity. Biotechniques 2011, 51 (2), 119-28.
194. Greeve, J.; Philipsen, A.; Krause, K.; Klapper, W.; Heidorn, K.; Castle, B. E.; Janda, J.; Marcu, K. B.; Parwaresch, R., Expression of activation-induced cytidine deaminase in human B-cell non-Hodgkin lymphomas. Blood 2003, 101 (9), 3574-80.
195. Cattoretti, G.; Shaknovich, R.; Smith, P. M.; Jack, H. M.; Murty, V. V.; Alobeid, B., Stages of germinal center transit are defined by B cell transcription factor coexpression and relative abundance. Journal of Immunology 2006, 177 (10), 6930-6939.
196. Lada, A. G.; Stepchenkova, E. I.; Waisertreiger, I. S.; Noskov, V. N.; Dhar, A.; Eudy, J. D.; Boissy, R. J.; Hirano, M.; Rogozin, I. B.; Pavlov, Y. I., Genome-wide mutation avalanches induced in diploid yeast cells by a base analog or an APOBEC deaminase. PLoS genetics 2013, 9 (9), e1003736.
197. Roberts, S. A.; Gordenin, D. A., Clustered and genome-wide transient mutagenesis in human cancers: Hypermutation without permanent mutators or loss of fitness. BioEssays : news and reviews in molecular, cellular and developmental biology 2014.
198. Klemm, L.; Duy, C.; Iacobucci, I.; Kuchen, S.; von Levetzow, G.; Feldhahn, N.; Henke, N.; Li, Z.; Hoffmann, T. K.; Kim, Y. M.; Hofmann, W. K.; Jumaa, H.; Groffen, J.; Heisterkamp, N.; Martinelli, G.; Lieber, M. R.; Casellas, R.; Muschen, M., The B cell mutator AID promotes B lymphoid blast crisis and drug resistance in chronic myeloid leukemia. Cancer cell 2009, 16 (3), 232-45.
199. Zahn, A.; Eranki, A. K.; Patenaude, A. M.; Methot, S. P.; Fifield, H.; Cortizas, E. M.; Foster, P.; Imai, K.; Durandy, A.; Larijani, M.; Verdun, R. E.; Di Noia, J. M., Activation induced deaminase C-terminal domain links DNA breaks to end protection and repair during class switch recombination. Proc Natl Acad Sci U S A 2014, 111 (11), E988-97.
200. Wang, C. L.; Harper, R. A.; Wabl, M., Genome-wide somatic hypermutation. Proceedings of the National Academy of Sciences of the United States of America 2004, 101 (19), 7352-7356.
201. Transfection of mammalian cells by electroporation. Nat Methods 2006, 3 (1), 67-68.
202. Boder, E. T.; Wittrup, K. D., Optimal screening of surface-displayed polypeptide libraries. Biotechnology Progress 1998, 14 (1), 55-62.
203. Zhang, W.; Bardwell, P. D.; Woo, C. J.; Poltoratsky, V.; Scharff, M. D.; Martin, A., Clonal instability of V region hypermutation in the Ramos Burkitt's lymphoma cell line. Int Immunol 2001, 13 (9), 1175-1184.
204. Bahjat, M.; Guikema, J. E. J., The Complex Interplay between DNA Injury and Repair in Enzymatically Induced Mutagenesis and DNA Damage in B Lymphocytes. International Journal of Molecular Sciences 2017, 18 (9).
205. Wang, Z.-G.; Williams, L.; Zhang, X.-F.; Zatorski, A.; Kudryashov, V.; Ragupathi, G.; Spassova, M.; Bornmann, W.; Slovin, S.; Scher, H., Polyclonal antibodies from patients immunized with a globo H-keyhole limpet hemocyanin vaccine: isolation, quantification, and characterization of immune responses by using totally synthetic immobilized tumor antigens. Proceedings of the National Academy of Sciences 2000, 97 (6), 2719-2724.
206. Huang, Y.-L.; Hung, J.-T.; Cheung, S. K.; Lee, H.-Y.; Chu, K.-C.; Li, S.-T.; Lin, Y.-C.; Ren, C.-T.; Cheng, T.-J. R.; Hsu, T.-L., Carbohydrate-based vaccines with a glycolipid adjuvant for breast cancer. Proceedings of the National Academy of Sciences 2013, 110 (7), 2517-2522.
207. Lutz, J.-F.; Zarafshani, Z., Efficient construction of therapeutics, bioconjugates, biomaterials and bioactive surfaces using azide–alkyne “click” chemistry. Advanced drug delivery reviews 2008, 60 (9), 958-970.
208. Ragupathi, G.; PArk, T. K.; Zhang, S. L.; Kim, I. J.; Graber, L.; Adluri, S.; Lloyd, K. O.; Danishefsky, S. J.; Livingston, P. O., Immunization of mice with a fully synthetic globo H antigen results in antibodies against human cancer cells: A combined chemical-immunological approach to the fashioning of an anticancer vaccine. Angew Chem Int Edit 1997, 36 (1-2), 125-128.
209. Mossner, E.; Pluckthun, A., Directed evolution with fast and efficient selection technologies. Chimia 2001, 55 (4), 325-329.
210. Heydenreich, F. M.; Miljus, T.; Jaussi, R.; Benoit, R.; Milic, D.; Veprintsev, D. B., High-throughput mutagenesis using a two-fragment PCR approach. Sci Rep-Uk 2017, 7.
211. Drummond, D. A.; Iverson, B. L.; Georgiou, G.; Arnold, F. H., Why high-error-rate random mutagenesis libraries are enriched in functional and improved proteins. Journal of molecular biology 2005, 350 (4), 806-816.
212. Bratulic, S.; Badran, A. H., Modern methods for laboratory diversification of biomolecules. Curr Opin Chem Biol 2017, 41, 50-60.
213. J King, D.; M Bowers, P.; R Kehry, M.; A Horlick, R., Mammalian cell display and somatic hypermutation in vitro for human antibody discovery. Current drug discovery technologies 2014, 11 (1), 56-64.
214. Cumbers, S. J.; Williams, G. T.; Davies, S. L.; Grenfell, R. L.; Takeda, S.; Batista, F. D.; Sale, J. E.; Neuberger, M. S., Generation and iterative affinity maturation of antibodies in vitro using hypermutating B-cell lines. Nature biotechnology 2002, 20 (11), 1129-1134.
215. Seo, H.; Hashimoto, S.; Tsuchiya, K.; Lin, W.; Shibata, T.; Ohta, K., An ex vivo method for rapid generation of monoclonal antibodies (ADLib system). Nat Protoc 2006, 1 (3), 1502-6.
216. Arakawa, H.; Kudo, H.; Batrak, V.; Caldwell, R. B.; Rieger, M. A.; Ellwart, J. W.; Buerstedde, J. M., Protein evolution by hypermutation and selection in the B cell line DT40. Nucleic Acids Res 2008, 36 (1), e1.
217. Chen, S.; Qiu, J.; Chen, C.; Liu, C.; Liu, Y.; An, L.; Jia, J.; Tang, J.; Wu, L.; Hang, H., Affinity maturation of anti-TNF-alpha scFv with somatic hypermutation in non-B cells. Protein & cell 2012, 3 (6), 460-9.
218. McConnell, A. D.; Do, M.; Neben, T. Y.; Spasojevic, V.; MacLaren, J.; Chen, A. P.; Altobell, L., 3rd; Macomber, J. L.; Berkebile, A. D.; Horlick, R. A.; Bowers, P. M.; King, D. J., High affinity humanized antibodies without making hybridomas; immunization paired with mammalian cell display and in vitro somatic hypermutation. PLoS One 2012, 7 (11), e49458.
219. Horlick, R. A.; Macomber, J. L.; Bowers, P. M.; Neben, T. Y.; Tomlinson, G. L.; Krapf, I. P.; Dalton, J. L.; Verdino, P.; King, D. J., Simultaneous surface display and secretion of proteins from mammalian cells facilitate efficient in vitro selection and maturation of antibodies. Journal of Biological Chemistry 2013, 288 (27), 19861-19869.
220. Chen, C.; Li, N.; Zhao, Y.; Hang, H., Coupling recombinase-mediated cassette exchange with somatic hypermutation for antibody affinity maturation in CHO cells. Biotechnology and bioengineering 2016, 113 (1), 39-51.
221. Taniguchi, M.; Sanbo, M.; Watanabe, S.; Naruse, I.; Mishina, M.; Yagi, T., Efficient production of Cre-mediated site-directed recombinants through the utilization of the puromycin resistance gene, pac: a transient gene-integration marker for ES cells. Nucleic Acids Res 1998, 26 (2), 679-80.
222. Li, M. A.; Turner, D. J.; Ning, Z.; Yusa, K.; Liang, Q.; Eckert, S.; Rad, L.; Fitzgerald, T. W.; Craig, N. L.; Bradley, A., Mobilization of giant piggyBac transposons in the mouse genome. Nucleic Acids Res 2011, 39 (22), e148.
223. Haemmerle, G.; Zimmermann, R.; Hayn, M.; Theussl, C.; Waeg, G.; Wagner, E.; Sattler, W.; Magin, T. M.; Wagner, E. F.; Zechner, R., Hormone-sensitive lipase deficiency in mice causes diglyceride accumulation in adipose tissue, muscle, and testis. J Biol Chem 2002, 277 (7), 4806-15.
224. Yaari, G.; Benichou, J. I. C.; Heiden, J. A. V.; Kleinstein, S. H.; Louzoun, Y., The mutation patterns in B-cell immunoglobulin receptors reflect the influence of selection acting at multiple time-scales. Philos T R Soc B 2015, 370 (1676).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top