跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.172) 您好!臺灣時間:2025/09/12 00:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:周煜軒
研究生(外文):Yu-Syuan Chou
論文名稱:基於區塊鏈與強化式學習在分散式智慧電網的自動化配電技術
論文名稱(外文):Automatic Distribution Technology of Distributed Smart Grid Based on Blockchain and Reinforcement Learning
指導教授:陳煥陳煥引用關係
口試委員:范耀中蘇暉凱
口試日期:2018-07-24
學位類別:碩士
校院名稱:國立中興大學
系所名稱:資訊工程學系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:65
中文關鍵詞:區塊鏈強化式學習家庭能源管理系統
外文關鍵詞:BlockchainReinforcement learningHMES
相關次數:
  • 被引用被引用:0
  • 點閱點閱:316
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
為提高綠色能源及能源自主,各國均積極推廣再生能源布建及電網智慧化,而台灣屬島嶼型獨立電網且能源供應高度仰賴進口,近年亦規劃多項能源轉型及智慧電網政策。由於台灣能源即將轉型,針對這種新型態的分散式能源互聯網架構,使用者需要一個能源區塊鏈的平台,這平台需要具有安全性讓民眾能方便的對資料儲存、驗證和查閱等功能,這不僅能提高再生能源的利用率,便利的以低成本將電力轉移到需要處來使用。

而在能源轉型下,和民眾最直接接觸的就是家庭能源管理系統,在目前多次面臨限電危機和能源自主的狀況下,我們在供應端電力的需量反應變化和使用端智慧家庭的家庭能源管理系統做結合,利用具有前景的強化式學習模型,做最佳的能源營運策略,達到有效的調度供電和降低負載量等目的。
致謝詞 i
摘要 ii
Abstract iii
表目錄 vii
圖目錄 viii
第一章緒論 1
1.1 研究背景與動機 1
1.2 研究目的 4
1.3 主要貢獻 5
1.4 研究架構 6
第二章理論背景與相關文獻 7
2.1 區塊鏈(Blockchain) 7
2.1.1 原理 7
2.1.2 特性 13
2.1.3 近期研究 15
2.2 需量反應(Demand Response) 17
2.3 強化式學習(Reinforcement Learning) 19
2.3.1 原理19
2.3.2 近期研究22
2.4 家庭能源管理系統(Home Energy Management System) 23
2.4.1 架構 23
2.4.2 近期研究 24
第三章研究方法與架構 28
3.1 系統架構概述 28
3.2 電網資料保存平台 30
3.2.1 資料收集 30
3.2.2 階層式智能合約架構 32
3.3 家庭能源管理系統設計 36
3.3.1 資料前處理 36
3.3.2 分散強化式學習模型 38
第四章實驗結果與分析 45
4.1 階層式智能合約架構成果 45
4.1.1 實作設計與開發 45
4.1.2 平台展示 49
4.2 分散強化式學習模型實驗 50
4.2.1 評判標準 50
4.2.2 時間電價 51
4.2.3 即時電價 53
4.2.4 固定電價 55
第五章結論與未來展望 57
5.1 結論 57
5.2 未來展望 58
參考文獻 59
[1] bpalacio, “How a bitcoin transaction works.” https://visual.ly/community/
infographic/technology/bitcoin-infographic. Accessed July 11, 2018.
[2] D.Silver, “Ucl course on rl.” http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.
html. Accessed July 11, 2018.
[3] H. Farhangi, “The path of the smart grid,” IEEE power and energy magazine, vol. 8,
no. 1, 2010.
[4] 立法院, “電業法修正草案總說明.” https://electricitylaw.tier.org.tw/1050726%
E9%9B%BB%E6%A5%AD%E6%B3%95%E4%BF%AE%E6%AD%A3%E8%
8D%89%E6%A1%88%E6%A2%9D%E6%96%87.pdf. Accessed July 11, 2018.
[5] 張永瑞, 姜政綸, and 李奕德, “微電網發展前景及技術剖析,” Journal of Taiwan
Energy, vol. 2, no. 3, 2015.
[6] J. Benoit, “能源產業成就物聯網未來?.” https://www.ctimes.com.tw/DispArt/
tw/%E6%99%BA%E6%85%A7%E9%9B%BB%E7%B6%B2/Intel/%E6%84%
9F%E6%B8%AC%E5%99%A8/IIoT/%E9%9B%B2%E7%AB%AF%E9%81%
8B%E7%AE%97/17020212198F.shtml. Accessed July 11, 2018.
[7] M. Swan, Blockchain: Blueprint for a New Economy. California, United States:
O’Reilly Media, Inc., 2015.
[8] ITRI-ICL, “區塊鏈助一臂之力 綠能產業應用新未來.” https://ictjournal.
itri.org.tw/Content/Messagess/contents.aspx?&MmmID=654304432122064271&
CatID=654313611331661503&MSID=744065356735474250. Accessed July 11,
2018.
[9] 張文杰, “815 大停電那天,” Nuclear Newsletter, no. 168, 2017.
[10] 許志義and 洪穎正, “電力需求面管理與用戶群代表法制革新:先進國家案例
及其對臺灣之政策意涵,” Journal of Taiwan Energy, vol. 3, no. 2, 2016.
[11] N. P. AS, “Nord pool.” www.nordpoolspot.com/. Accessed July 11, 2018.
[12] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.
[13] 辜騰玉, “區塊鏈技術演進史.” https://www.ithome.com.tw/news/105370. Accessed
July 11, 2018.
[14] K. Fanning and D. P. Centers, “Blockchain and its coming impact on financial services,”
Journal of Corporate Accounting & Finance, vol. 27, no. 5, pp. 53–57, 2016.
[15] A. Azaria, A. Ekblaw, T. Vieira, and A. Lippman, “Medrec: Using blockchain for
medical data access and permission management,” in Open and Big Data (OBD),
International Conference on, pp. 25–30, IEEE, 2016.
[16] M. B. Hoy, “An introduction to the blockchain and its implications for libraries and
medicine,” Medical reference services quarterly, vol. 36, no. 3, pp. 273–279, 2017.
[17] M. Sharples and J. Domingue, “The blockchain and kudos: A distributed system for
educational record, reputation and reward,” in European Conference on Technology
Enhanced Learning, pp. 490–496, Springer, 2016.
[18] J. J. Sikorski, J. Haughton, and M. Kraft, “Blockchain technology in the chemical industry:
Machine-to-machine electricity market,” Applied Energy, vol. 195, pp. 234–
246, 2017.
[19] 台灣電力公司, “降低用電的好方法(需量反應措施).” https://www.taipower.
com.tw/upload/147/2017111320272937836.pdf. Accessed July 11, 2018.
[20] X. Fang, S. Misra, G. Xue, and D. Yang, “Smart grid—the new and improved power
grid: A survey,” IEEE communications surveys & tutorials, vol. 14, no. 4, pp. 944–
980, 2012.
[21] M. Glavic, R. Fonteneau, and D. Ernst, “Reinforcement learning for electric
power system decision and control: Past considerations and perspectives,” IFACPapersOnLine,
vol. 50, no. 1, pp. 6918–6927, 2017.
[22] Z. Wen, D. O’Neill, and H. Maei, “Optimal demand response using device-based
reinforcement learning,” IEEE Transactions on Smart Grid, vol. 6, no. 5, pp. 2312–
2324, 2015.
[23] F. Ruelens, B. Claessens, S. Vandael, B. De Schutter, R. Babuska, and R. Belmans,
“Residential demand response applications using batch reinforcement learning,”
arXiv preprint arXiv:1504.02125, 2015.
[24] E. C. Kara, M. Berges, B. Krogh, and S. Kar, “Using smart devices for system-level
management and control in the smart grid: A reinforcement learning framework,”
in Smart Grid Communications (SmartGridComm), 2012 IEEE Third International
Conference on, pp. 85–90, IEEE, 2012.
[25] R. Lu, S. H. Hong, and X. Zhang, “A dynamic pricing demand response algorithm for
smart grid: Reinforcement learning approach,” Applied Energy, vol. 220, pp. 220–
230, 2018.
[26] C. Lang and E. Okwelum, “The mitigating effect of strategic behavior on the net
benefits of a direct load control program,” Energy Economics, vol. 49, pp. 141–148,
2015.
[27] M. A. Piette, O. Sezgen, D. S. Watson, N. Motegi, C. Shockman, and L. Ten Hope,
“Development and evaluation of fully automated demand response in large facilities,”
2004.
[28] M. H. Albadi and E. F. El-Saadany, “Demand response in electricity markets: An
overview,” in Power Engineering Society General Meeting, 2007. IEEE, pp. 1–5,
IEEE, 2007.
[29] S. Majumdar, D. Chattopadhyay, and J. Parikh, “Interruptible load management using
optimal power flow analysis,” IEEE Transactions on Power Systems, vol. 11,
no. 2, pp. 715–720, 1996.
[30] J. Torriti, “Price-based demand side management: Assessing the impacts of timeof-
use tariffs on residential electricity demand and peak shifting in northern italy,”
Energy, vol. 44, no. 1, pp. 576–583, 2012.
[31] R. de Sá Ferreira, L. A. Barroso, P. R. Lino, M. M. Carvalho, and P. Valenzuela,
“Time-of-use tariff design under uncertainty in price-elasticities of electricity demand:
A stochastic optimization approach,” IEEE Transactions on Smart Grid,
vol. 4, no. 4, pp. 2285–2295, 2013.
[32] T. Hattori and N. Toda, “Demand response programs for residential customers in the
united states-evaluation of the pilot programs and the issues in practice,” Y10005,
CRIEPI Report, 2011.
[33] O. Erdinc, N. G. Paterakis, T. D. Mendes, A. G. Bakirtzis, and J. P. Catalão, “Smart
household operation considering bi-directional ev and ess utilization by real-time
pricing-based dr,” IEEE Transactions on Smart Grid, vol. 6, no. 3, pp. 1281–1291,
2015.
[34] K. Kuroda, T. Ichimura, and R. Yokoyama, “An effective evaluation approach of
demand response programs for residential side,” 2012.
[35] T. Kawakami, T. Yoshihisa, N. Fujita, and M. Tsukamoto, “A rule-based home
energy management system using the rete algorithm,” in Consumer Electronics
(GCCE), 2013 IEEE 2nd Global Conference on, pp. 162–163, IEEE, 2013.
[36] T. Yoshihisa, N. Fujita, and M. Tsukamoto, “A rule generation method for electrical
appliances management systems with home eod,” in Consumer Electronics (GCCE),
2012 IEEE 1st Global Conference on, pp. 248–250, IEEE, 2012.
[37] M. S. Ahmed, A. Mohamed, H. Shareef, R. Z. Homod, and J. A. Ali, “Artificial
neural network based controller for home energy management considering demand
response events,” in Advances in Electrical, Electronic and Systems Engineering
(ICAEES), International Conference on, pp. 506–509, IEEE, 2016.
[38] B. Yuce, Y. Rezgui, and M. Mourshed, “Ann–ga smart appliance scheduling for optimised
energy management in the domestic sector,” Energy and Buildings, vol. 111,
pp. 311–325, 2016.
[39] S. K. Gharghan, R. Nordin, M. Ismail, and J. A. Ali, “Accurate wireless sensor localization
technique based on hybrid pso-ann algorithm for indoor and outdoor track
cycling,” IEEE Sensors Journal, vol. 16, no. 2, pp. 529–541, 2016.
[40] M. S. Ahmed, A. Mohamed, R. Z. Homod, and H. Shareef, “Hybrid lsa-ann based
home energy management scheduling controller for residential demand response
strategy,” Energies, vol. 9, no. 9, p. 716, 2016.
[41] L. Suganthi, S. Iniyan, and A. A. Samuel, “Applications of fuzzy logic in renewable
energy systems–a review,” Renewable and Sustainable Energy Reviews, vol. 48,
pp. 585–607, 2015.
[42] Y. Wu, B. Zhang, J. Lu, and K. Du, “Fuzzy logic and neuro-fuzzy systems: A systematic,”
International Journal of Artificial Intelligence and Expert Systems (IJAE),
p. 47, 2011.
[43] Y.-Y. Hong, J.-K. Lin, C.-P. Wu, and C.-C. Chuang, “Multi-objective airconditioning
control considering fuzzy parameters using immune clonal selection
programming.,” IEEE Trans. Smart Grid, vol. 3, no. 4, pp. 1603–1610, 2012.
[44] A. Mohsenzadeh, M. H. Shariatkhah, and M.-R. Haghifam, “Applying fuzzy techniques
to model customer comfort in a smart home control system,” 2013.
[45] D. Setlhaolo, X. Xia, and J. Zhang, “Optimal scheduling of household appliances for
demand response,” Electric Power Systems Research, vol. 116, pp. 24–28, 2014.
[46] A. Anvari-Moghaddam, H. Monsef, and A. Rahimi-Kian, “Optimal smart home
energy management considering energy saving and a comfortable lifestyle,” IEEE
Transactions on Smart Grid, vol. 6, no. 1, pp. 324–332, 2015.
[47] M. A. A. Pedrasa, T. D. Spooner, and I. F. MacGill, “Scheduling of demand side
resources using binary particle swarm optimization,” IEEE Transactions on Power
Systems, vol. 24, no. 3, pp. 1173–1181, 2009.
[48] M. Pedrasa, E. Spooner, and I. MacGill, “Robust scheduling of residential distributed
energy resources using a novel energy service decision-support tool,” in Innovative
Smart Grid Technologies (ISGT), 2011 IEEE PES, pp. 1–8, IEEE, 2011.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top